
695

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 33

DOI: 10.4018/978-1-4666-4301-7.ch033

ABSTRACT

An important challenge in software development is to have efficient tools for creating, debugging, and
testing software components developed for specific business domains. This is more imperative if it is
considered that a large number of users are not familiar with popular programming languages. Hence,
Application Creation Environments (ACEs) based on specific Domain-Specific Languages (DSLs) can
provide an efficient way for creating applications for a specific domain of interest. The provided ACEs
should incorporate all the functionality needed by developers to build, debug, and test applications. In
this chapter, the authors present their contribution in this domain based on the experience of the IPAC
system. The IPAC system provides a middleware and an ACE for developing and using intelligent, context-
aware services in mobile nodes. The chapter fully describes the ACE, which is a key part of the overall
architecture. The ACE provides two editors (textual, visual), a wide functionality spectrum, as well as
a debugger and an application emulator. The ACE is based on an Application Description Language
(ADL) developed for IPAC. The ADL provides elements for the description of an application workflow
for embedded systems. Through such functionality, developers are capable of efficiently creating and
testing applications that will be deployed on mobile nodes.

Creating, Debugging, and
Testing Mobile Applications
with the IPAC Application

Creation Environment
Kostas Kolomvatsos

National & Kapodistrian University of Athens, Greece

George Valkanas
National & Kapodistrian University of Athens, Greece

Petros Patelis
National & Kapodistrian University of Athens, Greece

Stathes Hadjiefthymiades
National & Kapodistrian University of Athens, Greece

696

Creating, Debugging, and Testing Mobile Applications with the IPAC Application Creation Environment

INTRODUCTION

In Computer Science applications, software com-
ponents should be developed in order to provide
more intelligence in the produced systems. How-
ever, users, lacking experience with programming
languages are not able to write productive software
components.

In such cases, Application Creation Environ-
ments (ACEs) play a critical role in building and
testing software components. With these tools,
developers can efficiently design software com-
ponents as they can utilize a number of editing
facilities without the need of using a conventional
programming language. In general, ACEs contain:
a) a source code editor, b) a debugger, and c)
application building automation tools. Software
components are developed for a specific domain.
Therefore, the vast majority of programming lan-
guages do not provide an efficient solution. In this
case, Model-Driven Engineering (MDE) (Schmidt,
2006) can provide a number of advantages. MDE
is a software development methodology, aiming
to increase efficiency in developing applications
for a specific domain, through the creation of
appropriate models. Domain-Specific Languages
(DSLs) (Mernik et al., 2005) follow the principles
of MDE development and can provide a number
of advantages in cases of limited programming
knowledge. A DSL is a language designed to
solve problems that arise in a particular field of
application, targeting more specific tasks than
classic programming languages. DSLs provide the
means for describing parameters for a domain of
interest having a concrete syntax. Several semantic
models are used for the description of the problem.
These semantics lead to the automatic genera-
tion of specific tools used for the creation of the
final code, which could be in a general purpose
programming language (e.g. Java). In DSL tools,
there are specific methodologies for the definition
of the semantics of each language. Compared to
general-purpose languages they offer better ex-
pressiveness in their specific focus domain. The

most significant advantage of DSLs is that they
provide users with the capability to write domain
specific programs more easily. These programs
are independent of the underlying platform, which
is another advantage.

However, developing applications with a DSL
also presents some disadvantages. The most im-
portant is that there are not any commonly used
debuggers for DSLs. A primary reason for this
fact is that DSLs are oriented to specific domains
and generic debuggers cannot be used. Hence,
the development of debugging facilities for DSLs
is necessary. Based on such tools, users will be
capable of debugging the source code of their ap-
plications. The debugger should be DSL-oriented,
covering all of the language elements. Another
disadvantage is that applications developed for
embedded systems should be emulated prior to
final deployment. Through emulation, developers
can identify possible errors, as well as performance
issues. However, as in the case of debuggers, there
are not any generic emulators that can be adapted
to every DSL.

In this chapter, we present our system for creat-
ing and testing applications developed with a DSL,
fully integrated into ACE functionalities. The Inte-
grated Platform for Autonomic Computing (IPAC)
(Tsetsos et al., 2010) ACE provides two editors: a
textual, and a visual editor. Each of them provides
a number of functionalities for the application
creation process. Such applications are created for
deployment in mobile nodes. The provided ACE
aims not only to experienced developers but also to
non – experienced programmers. The IPAC ACE
depends on an Application Description Language
(ADL) created in the framework of the IPAC
project. The ADL is the basis for the creation of
a number of s/w productivity tools. We describe
the code generation component responsible for
producing the target code in a certain language
(e.g., Java). We developed the IPAC Debugger,
responsible for accepting logging messages that
follow a pre-defined format and present them in
a user friendly interface. Such logging messages

22 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/creating-debugging-testing-mobile-

applications/77728

Related Content

Introducing a Novel Security-Enhanced Agile Software Development Process
Martin Boldt, Andreas Jacobsson, Dejan Bacaand Bengt Carlsson (2017). International Journal of Secure

Software Engineering (pp. 26-52).

www.irma-international.org/article/introducing-a-novel-security-enhanced-agile-software-development-process/190420

Theory of Ontology and Meta-Modeling and the Standard: An Enabler for Semantic

Interoperability
Keqing He, Chong Wang, Yangfan He, Yutao Maand Peng Liang (2010). Handbook of Research on

Software Engineering and Productivity Technologies: Implications of Globalization (pp. 58-101).

www.irma-international.org/chapter/theory-ontology-meta-modeling-standard/37026

Quality Assurance of Website Structure
G. Sreedhar (2013). Designing, Engineering, and Analyzing Reliable and Efficient Software (pp. 140-148).

www.irma-international.org/chapter/quality-assurance-website-structure/74878

Economics of Software Testing Using Discrete Approach
Avinash K. Shrivastavaand Ruchi Sharma (2022). International Journal of Software Innovation (pp. 1-13).

www.irma-international.org/article/economics-of-software-testing-using-discrete-approach/297507

Redesigning a SAD Course to Promote Problem-Based Learning
Ann M. Quade (2009). Handbook of Research on Modern Systems Analysis and Design Technologies and

Applications (pp. 642-654).

www.irma-international.org/chapter/redesigning-sad-course-promote-problem/21092

http://www.igi-global.com/chapter/creating-debugging-testing-mobile-applications/77728
http://www.igi-global.com/chapter/creating-debugging-testing-mobile-applications/77728
http://www.irma-international.org/article/introducing-a-novel-security-enhanced-agile-software-development-process/190420
http://www.irma-international.org/chapter/theory-ontology-meta-modeling-standard/37026
http://www.irma-international.org/chapter/quality-assurance-website-structure/74878
http://www.irma-international.org/article/economics-of-software-testing-using-discrete-approach/297507
http://www.irma-international.org/chapter/redesigning-sad-course-promote-problem/21092

