
506

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 25

Robust Network Services with
Distributed Code Rewriting

ABSTRACT

Nature does not know the concept of a dedicated controlling instance; instead, “control” is an emer-
gent phenomenon. This is in stark contrast with computer networking where protocol control loops are
(seemingly) in charge: while the functional aspect of a networking service can be well mastered, the
dynamic behavior is still difficult to understand and even control. In this chapter, we present a methodol-
ogy how to design distributed software systems that are dynamically stable and robust in execution. It
is based on continuously replicating a system’s own code base in order to thwart unreliable execution
and even accidental code changes. The crucial part is to design the system such that it regulates its own
replication. This can be achieved by an execution environment inspired by chemistry to which we add
the concept of self-rewriting programs (Quines). With a link load balancing example we show how to
exploit competition and cooperation in a self-rewriting service implementation.

INTRODUCTION

Natural systems are able to dynamically construct
redundancy by assembling and reproducing their
components. Often, components exist in several
copies (flocks, but also blood or nerve cells), ex-
ploiting parallelism and minimizing the impact of
the loss of a single item. For singular components

(e.g. bones) and in order to fight the problem of
aging, redundancy is achieved over time through
procreation, yielding a new and possibly modified
copy. In computer science however, software is
considered to be static (and without wear). This
view is recent: Back in the 1940s, von Neumann
(1966) developed a theory of self-reproducing
automata. He described a universal constructor,
a machine able to produce a copy of any other

Thomas Meyer
University of Basel, Switzerland

Christian Tschudin
University of Basel, Switzerland

DOI: 10.4018/978-1-4666-4301-7.ch025

507

Robust Network Services with Distributed Code Rewriting

machine whose soft- and hardware blueprint is
provided as input. Being universal, the constructor
is also able to generate a copy of itself.

Considerable research on self-replication was
carried out on the framework of Cellular Automata
(CA), in which remarkable results were achieved,
also in terms of robustness and self-repair (Tem-
pesti, Mange, & Stauffer, 1998). However, these
results are hard to transfer from CA to the world of
today’s computer software. In the 1960s, with the
desire to understand the fundamental information-
processing principles and algorithms involved
in self-replication, researchers started to focus
on self-replicating code: how textual computer
programs are able to replicate independent from
their physical realization. The existence of self-
replicating programs is a consequence of Kleene’s
second recursion theorem (Kleene, 1938), which
states that for any program P there exists a pro-
gram P’, which generates its own encoding and
passes it to P along with the original input. The
simplest form of a self-replicating program is a
Quine, named after the philosopher and logician
Willard van Orman Quine, and made popular by
Hofstadter (1979): A Quine is a program that
prints its own code. Quines exist for any program-
ming language that is Turing complete and it is a
common challenge for students to come up with a
Quine in their language of choice. The Quine Page
provides a comprehensive list of such programs
in various languages (Thompson, 2010).

Contribution

In this work, we put Quines in a parallel execution
environment, permitting an ensemble of Quine
copies to achieve surprising robustness with re-
spect to code and packet loss and even execution
errors. Our contribution consists in the demon-
stration of an operational system based on Quines
that runs highly reliable network services with
provable dynamic properties. More precisely, we
will introduce an artificial chemistry embodied as
interconnected “molecule vessels” in which we

place carefully crafted self-replicating programs.
Packets, or “molecules”, react with each other and
produce new packets, thus executing the program.
Useful computations are piggybacked to the Quine
structures in order to implement the network ser-
vices. Due to the special scheduling of the reactions
in the artificial chemistry according to the “law of
mass action” in real chemistry, our system inherits
the dynamic properties from chemistry such that
we can apply the related analysis tools that were
developed in the past two centuries. The law of
mass action links the microscopic (scheduling)
events with the observable behavior at macro
scale. Using perturbation analysis, we can then
proceed in identifying equilibria and their stability.

Structure of this Chapter

We present our work along the following argumen-
tation path: After having highlighted the context
of our approach and related work, we proceed
with introducing a new “style” of implementing
network services that we call chemical networking
protocols. Next, we present “chemical Quines”
and we extensively study their long-term stability,
both in a single node as well as in a distributed
setting. We also look at competing Quines and
show that the aggressive growth of Quines leads
to a winner-takes-all dynamics. We then inves-
tigate cooperative couplings of Quines and put
these insights to work with a link-load-balancing
service for which we show its resilience to packet
and code loss.

CONTEXT AND RELATED WORK

In this section, we reference the relevant corner
stones for our work where we could draw important
insights, namely self-reproduction, fault tolerance,
artificial chemistries and their dynamics, the
dynamics of competing populations and finally
cooperation patterns. The programming language
“Fraglets”, which we have used to implement our

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/robust-network-services-distributed-code/77720

Related Content

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User

Interfaces
Kenia Sousa, Albert Schillingand Elizabeth Furtado (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 2307-2324).

www.irma-international.org/chapter/integrating-usability-semiotic-software-engineering/29507

Filter/Wrapper Methods for Gene Selection and Classification of Microarray Dataset
Norreddine Mekour, Reda Mohamed Hamouand Abdelmalek Amine (2019). International Journal of

Software Innovation (pp. 65-80).

www.irma-international.org/article/filterwrapper-methods-for-gene-selection-and-classification-of-microarray-

dataset/230924

A Survey of Web Services Provision
An Liu, Hai Liu, Baoping Lin, Liusheng Huang, Naijie Guand Qing Li (2010). International Journal of

Systems and Service-Oriented Engineering (pp. 26-45).

www.irma-international.org/article/survey-web-services-provision/39097

Design-Based Research with AGILE Sprints to Produce MUVES in Vocational Education
Todd Cochrane, Niki E. Davisand Julie Mackey (2018). Application Development and Design: Concepts,

Methodologies, Tools, and Applications (pp. 607-624).

www.irma-international.org/chapter/design-based-research-with-agile-sprints-to-produce-muves-in-vocational-

education/188226

What is the Benefit of a Model-Based Design of Embedded Software Systems in the Car

Industry?
Manfred Broy, Sascha Kirstan, Helmut Krcmarand Bernhard Schätz (2014). Software Design and

Development: Concepts, Methodologies, Tools, and Applications (pp. 310-334).

www.irma-international.org/chapter/benefit-model-based-design-embedded/77712

http://www.igi-global.com/chapter/robust-network-services-distributed-code/77720
http://www.irma-international.org/chapter/integrating-usability-semiotic-software-engineering/29507
http://www.irma-international.org/article/filterwrapper-methods-for-gene-selection-and-classification-of-microarray-dataset/230924
http://www.irma-international.org/article/filterwrapper-methods-for-gene-selection-and-classification-of-microarray-dataset/230924
http://www.irma-international.org/article/survey-web-services-provision/39097
http://www.irma-international.org/chapter/design-based-research-with-agile-sprints-to-produce-muves-in-vocational-education/188226
http://www.irma-international.org/chapter/design-based-research-with-agile-sprints-to-produce-muves-in-vocational-education/188226
http://www.irma-international.org/chapter/benefit-model-based-design-embedded/77712

