164

Chapter 9
Addressing Highly Dynamic
Changes in Service-

Oriented Systems:
Towards Agile Evolution and Adaptation

Andreas Metzger
Paluno (The Ruhr Institute for Software Technology), University of Duisburg-Essen, Germany

Elisabetta Di Nitto
Politecnico di Milano, Italy

ABSTRACT

This chapter sets out to introduce relevant foundations concerning evolution and adaptation of service-
oriented systems. It starts by sketching the historical development of software systems from monolithic
and mostly static applications to highly-dynamic, service-oriented systems. Then, it provides an overview
and more thorough explanation of the various kinds of changes that may need to be faced by service-

oriented systems. To understand how such changes could be addressed, the chapter introduces a refer-
ence service life-cycle model which distinguishes between evolution, viz. the manual modification of
the specification and implementation of the system during design-time, and (self-)adaptation, viz. the
autonomous modification of a service-oriented system during operation. Based on the discussion of the
key activities prescribed by that life-cycle, the chapter elaborates on the need for agility in both adapta-

tion and evolution of service-oriented systems.

INTRODUCTION

For future software systems and software develop-
ment processes, the only constant will be change.
The “world” in which those future software sys-
tems operate is reaching unprecedented levels of

DOI: 10.4018/978-1-4666-4301-7.ch009

dynamicity (de Lemosetal.,2011). Those systems
will need to operate correctly in spite of changes
in, for example, user requirements, legal regula-
tions, and market opportunities. They will have to
operate despite a constantly changing context that
includes, forinstance, usage settings, locality, end-
user devices, network connectivity and computing
resources (such as offered by Cloud computing).

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Addressing Highly Dynamic Changes in Service-Oriented Systems

Furthermore, expectations by end-users concern-
ing the personalization and customization of those
systems will become increasingly relevant for
market success (Adomavicius & Tuzhilin, 2005).

Modern software technology has enabled us
to build software systems with a high degree of
flexibility. The mostimportant developmentin this
directionis the concept of service and the Service-
oriented Architecture (SOA) paradigm (Erl, 2004;
Kaye, 2003; Josuttis, 2007). A service-oriented
system is built by “composing” software services
(and is thus also called “service composition” or
“composed service” in the literature).

Software services achieve the aforementioned
high degree of flexibility by separating ownership,
maintenance and operation from the use of the
software. Service users do not need to acquire,
deploy and run software, because they can access
its functionality from remote through service in-
terfaces. Ownership, maintenance and operation
of the software remains with the service provider
(Di Nitto, et al., 2008).

While service-orientation offers huge benefits
in terms of flexibility, service-oriented systems
face yet another level of change and dynamism.
Services might disappear or change without the
user of the service having control over such a
change.

Agility, i.e., the ability to quickly and effec-
tively respond to changes, will thus play an ever
increasing role for future software systems to live
in the highly dynamic “world” as sketched above.
Agility can be considered from two viewpoints:

e First, agility may concern the evolution of
the system. This means that it concerns the
development process and how engineering
activities (such as requirements engineer-
ing and implementation) should be per-
formed to timely address changes by evolv-
ing the software.

e Secondly, agility may concern the adapta-
tion of the system. This means that it con-

cerns the system itself and how the system
should respond to changes (Papazoglou et
al., 2007). Agility in adaptation is typically
achieved through self-adaptation, i.e., the
autonomous modification of a service-ori-
ented system during operation.

In this chapter, we first sketch the historical
development of software systems from monolithic
and mostly static applications to highly-dynamic,
service-oriented systems. Then, we provide an
overview and more thorough explanation of the
various kinds of changes that need to be faced and
how these could be addressed. As reference for
the remainder of the chapter, we then introduce a
service life-cycle model which integrates evolu-
tion and adaptation into a coherent framework.
After elaborating on the activities prescribed by
that life-cycle, we discuss the need for agility in
evolution and adaptation. We conclude this chapter
with our perspectives on agile development for
service-oriented systems.

HISTORICAL DEVELOPMENT
The Emergence of the SOA Paradigm

In (Di Nitto et al., 2008) we gave an extensive
account of the historical development of software
technology and methods toward highly dynamic,
service-oriented systems. The following para-
graphs briefly summarize the major milestones
along this development.

Genesis: In the late 1960s software develop-
ment processes started to get disciplined through
the identification of well-defined stages and cri-
teria, which were to be met in order to progress
from one stage of the process to the next. The
waterfall life-cycle model as proposed by Royce
in 1970 was such an attempt. It was very rigid
and advocated the need for software developers to
focus not only on coding but also on higher-level

165

12 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/addressing-highly-dynamic-changes-
service/77704

Related Content

A Comparative Analysis of Reliability Assessment Methods for Web-Based Software

Jinhee Park, Yeong-Seok Seoand Jongmoon Baik (2013). International Journal of Software Innovation (pp.
31-44).

www.irma-international.org/article/a-comparative-analysis-of-reliability-assessment-methods-for-web-based-
software/105630

TESTAR: Tool Support for Test Automation at the User Interface Level

Tanja E.J. Vos, Peter M. Kruse, Nelly Condori-Fernandez, Sebastian Bauersfeldand Joachim Wegener
(2015). International Journal of Information System Modeling and Design (pp. 46-83).
www.irma-international.org/article/testar/126956

Leveraging Web 2.0 for Online Learning

Prerna Lal (2018). Application Development and Design: Concepts, Methodologies, Tools, and Applications
(pp. 1225-1239).

www.irma-international.org/chapter/leveraging-web-20-for-online-learning/188253

Exploring the Perceived End-Product Quality in Software-Developing Organizations
Jussi Kasurinen, Ossi Taipale, Jari Vanhanenand Kari Smolander (2012). International Journal of
Information System Modeling and Design (pp. 1-32).
www.irma-international.org/article/exploring-perceived-end-product-quality/65560

CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability Detection
Huning Dai, Christian Murphyand Gail E. Kaiser (2012). Security-Aware Systems Applications and
Software Development Methods (pp. 152-167).

www.irma-international.org/chapter/confu-configuration-fuzzing-testing-framework/65847

http://www.igi-global.com/chapter/addressing-highly-dynamic-changes-service/77704
http://www.igi-global.com/chapter/addressing-highly-dynamic-changes-service/77704
http://www.irma-international.org/article/a-comparative-analysis-of-reliability-assessment-methods-for-web-based-software/105630
http://www.irma-international.org/article/a-comparative-analysis-of-reliability-assessment-methods-for-web-based-software/105630
http://www.irma-international.org/article/testar/126956
http://www.irma-international.org/chapter/leveraging-web-20-for-online-learning/188253
http://www.irma-international.org/article/exploring-perceived-end-product-quality/65560
http://www.irma-international.org/chapter/confu-configuration-fuzzing-testing-framework/65847

