
96

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

Agile Software:
Body of Knowledge

ABSTRACT

The term Agile Method of software development was coined in the 2001.This approach is characterized
with creativity, flexibility, adaptability, responsiveness, and human-centricity. Researchers have suggested
that the complex, uncertain, and ever-changing environment is pushing developers to adopt agile methods
rather than traditional software development. Agile methodologist claim that their Agile methods is the
answer for the software engineering chaotic situation, in which projects are exceeding their time and
budget limits, requirements are not fulfilled, and consequently ending up with unsatisfied customers. In
this chapter we will explain agile methodology, its general characteristics, and quick description of the
famous agile methods known in the industry and research.

INTRODUCTION

The term Agile Method of software development
was coined in the 2001 (Agile Manafesto). This
approach is characterized with creativity, flex-
ibility, adaptability, responsiveness, and human-
centricity (Abrahamsson, et al. 2002). Researchers
have suggested that the complex, uncertain, and
ever-changing environment is pushing developers
to adopt agile methods rather than traditional soft-
ware development. That is because the uncertain

environment is pushing for flexibility in changing
requirements (Manninen & Berki 2004). More-
over, the advancements made in developing users
knowledge of computers and computer application
made it possible for users to actively participate
in the development process, a matter that is lack-
ing in traditional software development processes
(Monochristou and Vlachopoulou 2007).

This agility, however, is challenged with some
quality-related issues (Bass, 2006). That is, despite
of the quality features in agile methods, there is
some compromise on the amount of informa-
tion and knowledge communicated to customers

Zaidoun Alzoabi
Martin Luther University, Germany

DOI: 10.4018/978-1-4666-4301-7.ch006

97

Agile Software

arising due to the lack of documentation that
strongly characterizes agile methods (Ambler
2005, McBreen 2003, Berki 2006). This was due
to the innate trend in agile methods to concentrate
on human-based techniques in communicating
knowledge such as on-site-customer, pair pro-
gramming, and daily short meetings.

The human-centricity of Agile methods implies
that the main focus of the software production
process is to maximize the knowledge transferred
and shared among various stakeholders of the
software project. Hence, we will investigate the
knowledge component in the main Agile method:
extreme programming, despite the fact the other
Agile methods show clear KM techniques.

Agile methods in fact came as response to
the failure software projects were facing. Agile
methods came after decades of applying tra-
ditional, process-based software development
methodologies that are characterized with heavy
documentation, strong emphasis on the process,
and less communication with customers (Beck,
2000)

The rest of the chapter is organized as follows:
first we will introduce agile methods history, ex-
plaining how agile methods emerged through last
two decades. Then we will explain what are the
major agile principles, concepts, and trends. After
that we will move to discuss the most famous agile
methods, namely: extreme programming, scrum,
Feature Driven Development FDD, Adaptive Soft-
ware Development, ASD, Crystal, Lean Software
Development, and Agile Modeling. Finally we
conclude our chapter by discussing agile methods
pros and cons as found in the literature.

AGILE DEVELOPMENT HISTORY

On February 11-13, 2001, representatives from Ex-
treme Programming, SCRUM, DSDM, Adaptive
Software Development, Crystal, Feature-Driven
Development, Pragmatic Programming, and
others sympathetic to the need for an alternative

to documentation driven, heavyweight software
development processes, gathered at the Snowbird
resort in Utah to form what is known now by the
Agile Alliance.

However, this was just to coin the name Agile,
not to say that agile methodologies were born at
that time. Several agile methods had been by that
time already born and applied in throughout the
1990’s. Figure 1 shows the early history of Agile
methods.

From the figure we can see the following
observations from the history of agile methods
development:

•	 Agile methods were already in practice for
more than half a decade before forming the
Agile Alliance.

•	 The first two agile methods were DSDM
and Scrum.

•	 Rapid Application Development and ob-
ject-oriented development could be con-
sidered the transitional method between
traditional development methods and agile
methods.

•	 Between 1998 and 2002 is the most pro-
ductive period for agile methods as the
Agile Alliance was formed and many agile
methods came into existence.

•	 After 2002 agile methods use in the indus-
try has grown exponentially (Begel and
Nagappan 2007,) with XP and Scrum tak-
ing the lead.

AGILE PRINCIPLES
AND TECHNIQUES

Agile Principles

Agile software development is not a set of tools
or a single methodology, but a philosophy in its
own. Agile was a significant departure from the
heavyweight document-driven software develop-
ment methodologies such as waterfall and spiral

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/agile-software-body-knowledge/77701

Related Content

Interfacing of Actuators and Sensors
Manivel Kandasamy, Raju Shanmugam, Sandipan Saha, Rohan Shankar Patiland Keyur Patel (2023).

Cyber-Physical Systems and Supporting Technologies for Industrial Automation (pp. 245-279).

www.irma-international.org/chapter/interfacing-of-actuators-and-sensors/328504

Analyses of Evolving Legacy Software into Secure Service-Oriented Software using Scrum and

a Visual Model
Sam Chung, Conrado Crompton, Yan Bai, Barbara Endicott-Popovsky, Seung-Ho Baegand Sangdeok Park

(2014). Software Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 1764-

1786).

www.irma-international.org/chapter/analyses-evolving-legacy-software-into/77779

Managing Software Projects with Team Software Process (TSP)
Salmiza Saul Hamid, Mohd Hairul Nizam Md Nasir, Shamsul Sahibuddinand Mustaffa Kamal Mohd Nor

(2014). Software Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 1550-

1583).

www.irma-international.org/chapter/managing-software-projects-team-software/77771

From Frequent Features to Frequent Social Links
Erick Stattnerand Martine Collard (2013). International Journal of Information System Modeling and Design

(pp. 76-98).

www.irma-international.org/article/from-frequent-features-to-frequent-social-links/80197

ART-Improving Execution Time for Flash Applications
Ming Yingand James Miller (2011). International Journal of Systems and Service-Oriented Engineering (pp.

1-20).

www.irma-international.org/article/art-improving-execution-time-flash/55059

http://www.igi-global.com/chapter/agile-software-body-knowledge/77701
http://www.irma-international.org/chapter/interfacing-of-actuators-and-sensors/328504
http://www.irma-international.org/chapter/analyses-evolving-legacy-software-into/77779
http://www.irma-international.org/chapter/managing-software-projects-team-software/77771
http://www.irma-international.org/article/from-frequent-features-to-frequent-social-links/80197
http://www.irma-international.org/article/art-improving-execution-time-flash/55059

