
214

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

1. INTRODUCTION

The term ‘life cycle’ means the changes that hap-
pen in the life of an animal or plant. In software
engineering, this term is usually applied to arti-
ficial software systems to mean the changes that
happen in the ‘life’ of a software product. Various
identifiable phases between the product’s ‘birth’
and its eventual ‘death’ are known as lifecycle
phases.

Typical software lifecycle phases are (Leszek,
2005):

1. Requirement Analysis
2. System Design
3. Implementation
4. Integration and Development
5. Operation and Maintenance

Runa Jesmin
Imperial College London, UK & Harefield Hospital, UK

Software Development
Techniques for Constructive

Information Systems

ABSTRACT

This chapter discusses the software engineering lifecycle, history, and software architecture as well as the
foundation of Information Engineering and Information Systems. The first part of this chapter discusses
the software lifecycle phases and how to make effective use of various technical methods by applying
effective technical and other efficient methods at the right time. This chapter also shows the technical
similarities between software database design and Information System’s database design. In the second
part of this chapter, the author introduces the information engineering life cycle and discusses the key
phrases for information engineering as well as Information System. In fact, this part is a good diction-
ary of information and software engineering. This chapter provides guidance for decision-makers in
selecting an appropriate Information System strategy that contributes to the achievement of information
engineering sustainability targets and leverages competitiveness.

DOI: 10.4018/978-1-4666-3679-8.ch011

215

Software Development Techniques for Constructive Information Systems

There are a number of life cycle models –
each for a different way of organising software
development activities.

2. BACKGROUND

In software engineering, life cycle models rep-
resenting different software engineering meth-
odologies, aim to centralise developers efforts
around critical issues such as usability, efficiency,
reliability and customer satisfaction.

There are numerous books in software model-
ling but comparatively Information Engineering
fields could improve with more research in this
area (Ivar et al,1999). On the contrary, Informa-
tion Engineering is certainly well developed in
providing successful system for overall profit and
success (Sidney et al. review of 1974).

There are many Information Engineering
dictionaries available in the market (e.g. business-
dictionary.com) but this chapter will provide the
reader a good simple groundwork of Information
Engineering.

3. SOFTWARE DEVELOPMENT

John Tukey has used the term “software” the first
time in the American Mathematical Monthly
journal in January 1958. However, the purpose
of software remains the same today as it was in
the 1940s – at the very beginning of computing.

Today software development is often used
to enhance a company’s enterprise information
capabilities by building new functions into an
already existing infrastructure, or by gluing to-
gether existing systems to carry out new services
(Kevin et al. 2005).

In general, the emphasis in software develop-
ment is increasingly on systems as components
in larger systems, components, which interact and

combine with each other, perhaps in ways that
were not envisaged by their original developers.

The true process of software development is
usually based on an irrational process (Pauline,
2004). A rational approach to software develop-
ment is believed to lead to better software devel-
opment. In addition, measurements of project
progress are made simpler if an initial agreement
on how a project is to be carried out exists, based
on such guidance.

(Parnas & Clements, 86) Faking the design
process allows ease of readability and understand-
ing of the development process by outsiders.

3.1 Software Architecture

Software architecture is a coherent set of abstract
patterns guiding the design of each aspect of a
larger software system.

A Dutch computer scientist first used the
concept ‘Software architecture’ in 1960s but has
increased in popularity since the early 1990s,
largely due to activity within Rational Software
Corporation and within Microsoft.

Mary Shaw and David Garlan’s book on Soft-
ware Architecture perspective on an emerging
discipline in 1996 brought forward the concepts
in Software Architecture, such as components,
connectors, styles and so on.

The software architect develops concepts and
plans for software modularity, module interaction
methods, user interface dialog style, interface
methods with external systems, innovative design
features, and high-level business object operations,
logic, and flow.

Software architecture describes the coarse
grain components (usually describes the computa-
tion) of the system. The connectors between these
components describe the communication, which
are explicit and pictured in a relatively detailed
way. In the implementation phase, the coarse
components are refined into “actual components,”

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-development-techniques-constructive-

information/75748

Related Content

UML-Driven Software Performance Engineering: A Systematic Mapping and Trend Analysis
Vahid Garousi, Shawn Shahnewazand Diwakar Krishnamurthy (2013). Progressions and Innovations in

Model-Driven Software Engineering (pp. 18-64).

www.irma-international.org/chapter/uml-driven-software-performance-engineering/78208

Designing Secure Software by Testing Application of Security Patterns
Takanori Kobashi, Hironori Washizaki, Nobukazu Yoshioka, Haruhiko Kaiya, Takao Okuboand Yoshiaki

Fukazawa (2019). Exploring Security in Software Architecture and Design (pp. 136-169).

www.irma-international.org/chapter/designing-secure-software-by-testing-application-of-security-patterns/221715

Healthcare Data Analytics Using Power BI
Nikita Sharmaand Dhrubasish Sarkar (2022). International Journal of Software Innovation (pp. 1-10).

www.irma-international.org/article/healthcare-data-analytics-using-power-bi/293267

Role Mining to Assist Authorization Governance: How Far Have We Gone?
Safaà Hachana, Nora Cuppens-Boulahiaand Frédéric Cuppens (2012). International Journal of Secure

Software Engineering (pp. 45-64).

www.irma-international.org/article/role-mining-assist-authorization-governance/74844

Requirements for the Testable Specification and Test Case Derivation in Conformance Testing
Tanja Toroiand Anne Eerola (2007). Verification, Validation and Testing in Software Engineering (pp. 136-

156).

www.irma-international.org/chapter/requirements-testable-specification-test-case/30750

http://www.igi-global.com/chapter/software-development-techniques-constructive-information/75748
http://www.igi-global.com/chapter/software-development-techniques-constructive-information/75748
http://www.irma-international.org/chapter/uml-driven-software-performance-engineering/78208
http://www.irma-international.org/chapter/designing-secure-software-by-testing-application-of-security-patterns/221715
http://www.irma-international.org/article/healthcare-data-analytics-using-power-bi/293267
http://www.irma-international.org/article/role-mining-assist-authorization-governance/74844
http://www.irma-international.org/chapter/requirements-testable-specification-test-case/30750

