
142

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  7

INTRODUCTION

A project fork takes place when software devel-
opers take a copy of the source code from one 
software package and use it to begin an inde-
pendent development work. In general, forking 
results in an independent version of the system 
that is maintained separately from its origin. In 
open source software development no permis-
sion from the original authors is needed to start a 
fork. Therefore, if some developers are unhappy 
with the fashion in which the project is being 

managed, they can start an independent project 
of their own. However, since other developers 
must then decide which version of the project to 
support, forking may dilute the community as the 
average number of developers per system under 
development decreases.

Despite some high-visibility forks, such as the 
forking of OpenOffice (http://www.openoffice.
org/) into LibreOffice (http://www.libreoffice.
org/) and the creation of various projects from the 
code base of MySQL (http://www.mysql.com/), 
the whole concept of forking has seen little study. 
Furthermore, developers’ motivations for forking 
are understood even less, although at times it seems 

Linus Nyman
Hanken School of Economics, Finland

Tommi Mikkonen
Tampere University of Technology, Finland

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

ABSTRACT

A project fork occurs when software developers take a copy of source code from one software package 
and use it to begin an independent development work that is maintained separately. Although forking 
in open source software does not require the permission of the original authors, the new version com-
petes for the attention of the same developers that have worked on the original version. The motivations 
developers have for performing forks are many, but in general they have received little attention. The 
authors present the results of a study of forks performed in SourceForge (http://sourceforge.net/) and 
list the developers’ motivations for their actions.

DOI: 10.4018/978-1-4666-2937-0.ch007



143

To Fork or Not to Fork

rational and straightforward to identify frustration 
with the fashion in which the main project is being 
managed as a core reason.

In this paper, we present the results of our 
investigation of SourceForge (http://sourceforge.
net/) for forked projects and the motivations the 
authors have identified for performing a fork. Fur-
thermore, we categorize the different motivations 
and identify some common misbeliefs regarding 
forking in general.

The rest of this paper is structured as follows: 
First, the paper discusses the necessary background 
for explaining some of the technical aspects as-
sociated with forking, and then we introduce the 
fashion in which the research was carried out. Next 
we offer insight into our most important findings, 
and discuss them in more detail. We then propose 
some directions for future research, and conclude 
the paper with some final remarks.

BACKGROUND

When pushed to the extreme, forks can be consid-
ered an expression of the freedom made available 
through free and open source software. A com-
monly associated downside is that forking creates 
the need for duplicated development efforts. In 
addition, it can confuse users about which forked 
package to use. In other words, developers have 
the option to collaborate and pool resources with 
free and open source software, but this is enforced 
not by free software licenses, but only by the com-
mitment of all parties to cooperate.

There are various ways to approach forking 
and its study. One is to categorize the different 
types to differentiate between, on the one hand, 
forks carried out due to amicable but irreconcil-
able disagreements and interpersonal conflicts 
about the direction of the project, and on the 
other, forks due to both technical disagreements 
and interpersonal conflicts (Fogel, 2006). Still, the 
most obvious form of forking occurs when, due to 
a disagreement among developers, a program splits 

into two versions with the original code serving 
as the basis for the new version of the program.

Raymond (2001) considers the actions of the 
developer community as well as the compatibility 
of new code to be a central issue in differentiating 
code forking from code fragmentation. Different 
distributions of a program are considered ‘pseudo-
forks’ because at first glance they appear to be 
forks, but in fact are not, since they can benefit 
enough from each others’ development efforts not 
to be a waste, either technically or sociologically. 
Moody (2011) reflects Raymond’s sentiments, 
pointing out that code fragmentation does not 
traditionally lead to a split in the community and 
is thus considered less of a concern than a fork of 
the same program would be. These sentiments both 
echo a distinction made by Fogel (2006): it is not 
the existence of a fork which hurts a project, but 
rather the loss of developers and users. Here it is 
worth noting, however, that forking can potentially 
also increase the developer community. In cases in 
which developers are not interested in working on 
the original (for instance due to frustration with 
the project direction, disagreements with a lead 
developer, or not wanting to work on a corporate 
sponsored project), not forking would lead to fewer 
developers as the developers in question would 
likely simply quit the project rather than continue 
work on the original.

Both Weber (2004) and Fogel (2006) discuss 
the concept of forks as being healthy for the 
ecosystem in a ‘survival of the fittest’ sense; the 
best code will survive. However, they also note 
that while a fork may benefit the ecosystem, it is 
likely to harm the individual project.

Another dimension to forking lies in the inten-
tion of the fork. Again, several alternatives may 
exist. For instance, the goal of forking can be to 
create different branches for stable and develop-
ment versions of the same system, in which case 
forking is commonly considered to serve the 
interests of the community. At the other extreme 
lies the hostile takeover, which means that a com-
mercial vendor attempts to privatize the source 



 

 

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/fork-not-fork/74666

Related Content

Open Sourcing the Pedagogy to Activate the Learning Process
Alan Reaand Nick Yeates (2021). Research Anthology on Usage and Development of Open Source

Software (pp. 289-306).

www.irma-international.org/chapter/open-sourcing-the-pedagogy-to-activate-the-learning-process/286579

Adaptive Spider Bird Swarm Algorithm-Based Deep Recurrent Neural Network for Malicious

JavaScript Detection Using Box-Cox Transformation
Scaria Alexand T. Dhiliphan Rajkumar (2020). International Journal of Open Source Software and

Processes (pp. 46-59).

www.irma-international.org/article/adaptive-spider-bird-swarm-algorithm-based-deep-recurrent-neural-network-for-

malicious-javascript-detection-using-box-cox-transformation/270895

Using Design of Experiments to Analyze Open Source Software Metrics for Change Impact

Estimation
Miloud Dahane, Mustapha Kamel Abdi, Mourad Bouneffa, Adeel Ahmadand Henri Basson (2019).

International Journal of Open Source Software and Processes (pp. 16-33).

www.irma-international.org/article/using-design-of-experiments-to-analyze-open-source-software-metrics-for-change-

impact-estimation/228980

A Software Fault Prediction on Inter- and Intra-Release Prediction Scenarios
Ashutosh Mishraand Meenu Singla (2021). International Journal of Open Source Software and Processes

(pp. 1-18).

www.irma-international.org/article/a-software-fault-prediction-on-inter--and-intra-release-prediction-scenarios/287611

The Open Source Perspective in Education Technology: A Digital Kon-Tiki Journey
Martin Dowand David Preston (2023). Business Models and Strategies for Open Source Projects (pp. 255-

281).

www.irma-international.org/chapter/the-open-source-perspective-in-education-technology/326645

http://www.igi-global.com/chapter/fork-not-fork/74666
http://www.irma-international.org/chapter/open-sourcing-the-pedagogy-to-activate-the-learning-process/286579
http://www.irma-international.org/article/adaptive-spider-bird-swarm-algorithm-based-deep-recurrent-neural-network-for-malicious-javascript-detection-using-box-cox-transformation/270895
http://www.irma-international.org/article/adaptive-spider-bird-swarm-algorithm-based-deep-recurrent-neural-network-for-malicious-javascript-detection-using-box-cox-transformation/270895
http://www.irma-international.org/article/using-design-of-experiments-to-analyze-open-source-software-metrics-for-change-impact-estimation/228980
http://www.irma-international.org/article/using-design-of-experiments-to-analyze-open-source-software-metrics-for-change-impact-estimation/228980
http://www.irma-international.org/article/a-software-fault-prediction-on-inter--and-intra-release-prediction-scenarios/287611
http://www.irma-international.org/chapter/the-open-source-perspective-in-education-technology/326645

