
77

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-4666-2482-5.ch005

1. INTRODUCTION

Model Driven Development (MDD) has been
considered a promising approach to software
development since its introduction about a decade
ago. The Object Management Group (OMG, 2010)
is the most prominent standardization body within
the MDD domain, and has developed a framework
for model driven development called Model

Driven Architecture (MDA). MDA is a framework
for developing applications and writing speci-
fications, where improved portability, platform
independence and cross-platform interoperability
are among keywords used by OMG to describe
the benefits of using this framework.

Kleppe et al. (2003) present the MDA de-
velopment lifecycle. The basis for development
is platform independent models (PIM), which

Jostein Jensen
Norwegian University of Science and Technology, Norway

Martin Gilje Jaatun
SINTEF, Norway

Not Ready for Prime Time:
A Survey on Security in Model

Driven Development

ABSTRACT

Model Driven Development (MDD) is by many considered a promising approach for software develop-
ment. This article reports the results of a systematic survey to identify the state-of-the-art within the topic
of security in model driven development, with a special focus on finding empirical studies. The authors
provide an introduction to the major secure MDD initiatives, but the survey shows that there is a lack
of empirical work on the topic. The authors conclude that better standardization initiatives and more
empirical research in the field is necessary before it can be considered mature.

78

Not Ready for Prime Time

specify functionality and behavior. These models
are abstracted away from the technology that will
be used to realize the system. PIMs can then be
transformed into platform specific models (PSM),
adding technology specific details to the PIM. PSM
again can then be transformed into code. Kleppe
and colleagues also mention a third model type
used during the requirements and analysis phase
of development, called computational independent
model (CIM).

Figure 1 shows the MDA software development
lifecycle as it is depicted by Kleppe et al. (2003).
The ovals to the left represent generic software
development phases, while the squares to the right
represent artifacts produced in an MDA context.
Artifacts developed during the requirements
phase and used for analysis are often referred to
as Computational Independent Models (CIM).
Platform independent models (PIM) are abstract
representations of the system to be built, and
independent of any implementation technology.
PIMs are transformed, preferably automatically
using tool support, to Platform Specific Models.
These are specific to the technology that will
be used to realize future systems. Continuing
the MDA lifecycle, PSMs are transformed into

code. Since PSMs are close to the technology,
this transformation is by some considered to be
straightforward (Kleppe et al., 2003).

Note that real life seldom has a perfect match
for theoretical frameworks such as the MDA
lifecycle presented in Figure 1. Thus, in concrete
examples one will not always find that all the
models such as CIM, PIM and PSM are actually
used in practice, and in such cases one must
modify the map to fit the terrain.

PIMs form the basis for low-level system de-
signs and as such constitute an important part of
a system’s documentation (while still providing
important abstractions). The layering between
platform independent models, platform specific
models and code are the key to solve problems
related to portability, platform independence and
interoperability. Developers are mainly supposed
to work with the platform independent models, and
since these are platform and technology neutral it
should be a relatively simple task to transform them
into different platforms and technology solutions.

In traditional software development, security
aspects are often considered late in the develop-
ment lifecycle, if they are considered at all (Wyk &
McGraw, 2005). However, the cost of eliminating

Figure 1. MDA Software development lifecycle

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/not-ready-prime-time/72199

Related Content

Dynamic Analysis and Profiling of Multithreaded Systems
Daniel G. Waddington, Nilabja Royand Douglas C. Schmidt (2009). Designing Software-Intensive Systems:

Methods and Principles (pp. 290-334).

www.irma-international.org/chapter/dynamic-analysis-profiling-multithreaded-systems/8240

Software Security Engineering – Part II: Security Policy, Analysis, and Design
Issa Traoreand Isaac Woungang (2013). Software Development Techniques for Constructive Information

Systems Design (pp. 256-284).

www.irma-international.org/chapter/software-security-engineering-part/75750

Flow Based Classification for Specification Based Intrusion Detection in Software Defined

Networking: FlowClassify
Nithya Sampathand Dinakaran M. (2019). International Journal of Software Innovation (pp. 1-8).

www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-

defined-networking/223518

An Efficient Approach of Vehicle Detection Based on Deep Learning Algorithms and Wireless

Sensors Networks
Cherifa Nakkach, Amira Zrelliand Tahar Ezzdine (2022). International Journal of Software Innovation (pp.

1-16).

www.irma-international.org/article/an-efficient-approach-of-vehicle-detection-based-on-deep-learning-algorithms-and-

wireless-sensors-networks/309722

A Conceptual Descriptive-Comparative Study of Models and Standards of Processes in SE,

SwE, and IT Disciplines Using the Theory of Systems
Manuel Mora, Ovsei Gelman, Rory O’Connor, Francisco Alvarezand Jorge Macías-Lúevano (2010).

Emerging Systems Approaches in Information Technologies: Concepts, Theories, and Applications (pp.

156-181).

www.irma-international.org/chapter/conceptual-descriptive-comparative-study-models/38179

http://www.igi-global.com/chapter/not-ready-prime-time/72199
http://www.irma-international.org/chapter/dynamic-analysis-profiling-multithreaded-systems/8240
http://www.irma-international.org/chapter/software-security-engineering-part/75750
http://www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-defined-networking/223518
http://www.irma-international.org/article/flow-based-classification-for-specification-based-intrusion-detection-in-software-defined-networking/223518
http://www.irma-international.org/article/an-efficient-approach-of-vehicle-detection-based-on-deep-learning-algorithms-and-wireless-sensors-networks/309722
http://www.irma-international.org/article/an-efficient-approach-of-vehicle-detection-based-on-deep-learning-algorithms-and-wireless-sensors-networks/309722
http://www.irma-international.org/chapter/conceptual-descriptive-comparative-study-models/38179

