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1. INTRODUCTION

Model Driven Development (MDD) has been 
considered a promising approach to software 
development since its introduction about a decade 
ago. The Object Management Group (OMG, 2010) 
is the most prominent standardization body within 
the MDD domain, and has developed a framework 
for model driven development called Model 

Driven Architecture (MDA). MDA is a framework 
for developing applications and writing speci-
fications, where improved portability, platform 
independence and cross-platform interoperability 
are among keywords used by OMG to describe 
the benefits of using this framework.

Kleppe et al. (2003) present the MDA de-
velopment lifecycle. The basis for development 
is platform independent models (PIM), which 
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specify functionality and behavior. These models 
are abstracted away from the technology that will 
be used to realize the system. PIMs can then be 
transformed into platform specific models (PSM), 
adding technology specific details to the PIM. PSM 
again can then be transformed into code. Kleppe 
and colleagues also mention a third model type 
used during the requirements and analysis phase 
of development, called computational independent 
model (CIM).

Figure 1 shows the MDA software development 
lifecycle as it is depicted by Kleppe et al. (2003). 
The ovals to the left represent generic software 
development phases, while the squares to the right 
represent artifacts produced in an MDA context. 
Artifacts developed during the requirements 
phase and used for analysis are often referred to 
as Computational Independent Models (CIM). 
Platform independent models (PIM) are abstract 
representations of the system to be built, and 
independent of any implementation technology. 
PIMs are transformed, preferably automatically 
using tool support, to Platform Specific Models. 
These are specific to the technology that will 
be used to realize future systems. Continuing 
the MDA lifecycle, PSMs are transformed into 

code. Since PSMs are close to the technology, 
this transformation is by some considered to be 
straightforward (Kleppe et al., 2003).

Note that real life seldom has a perfect match 
for theoretical frameworks such as the MDA 
lifecycle presented in Figure 1. Thus, in concrete 
examples one will not always find that all the 
models such as CIM, PIM and PSM are actually 
used in practice, and in such cases one must 
modify the map to fit the terrain.

PIMs form the basis for low-level system de-
signs and as such constitute an important part of 
a system’s documentation (while still providing 
important abstractions). The layering between 
platform independent models, platform specific 
models and code are the key to solve problems 
related to portability, platform independence and 
interoperability. Developers are mainly supposed 
to work with the platform independent models, and 
since these are platform and technology neutral it 
should be a relatively simple task to transform them 
into different platforms and technology solutions.

In traditional software development, security 
aspects are often considered late in the develop-
ment lifecycle, if they are considered at all (Wyk & 
McGraw, 2005). However, the cost of eliminating 

Figure 1. MDA Software development lifecycle
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