
88

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

INTRODUCTION

In environments where processing power is lim-
ited or where continuously increasing processing
power is needed, parallelization is the main method
for speeding up tasks. These tasks can be divided
into equally sized subtasks. Through the applica-

tion of multiple instruction stream, multiple data
stream (MIMD) techniques, the subtasks are as-
signed in parallel to available processing entities
(Hennessy & Patterson, 2003). When processing
a subtask fails or when processing is delayed due
to decreased performance, the subtask can be reas-
signed. Processing nodes can be added when they
become available or can be removed upon failure.

M. Leeman
Cisco, Belgium

A Resource-Aware Dynamic
Load-Balancing Parallelization

Algorithm in a Farmer-
Worker Environment

ABSTRACT

This paper describes an algorithm for dynamically assigning tasks to processing entities in a world where
each task has a set of resource or service requirements and each processing entity a set of resources or
service capabilities. A task needs to be assigned to a node that offers all required services and the set of
tasks is finished within a minimal execution time frame. Dependability and adaptability are inherent to
the algorithm so that it accounts for the varying execution time of each task or the failure of a process-
ing node. The algorithm is based on a dependable technique for farmer-worker parallel programs and
is enhanced for modeling the time constraints in combination with the required configuration set in a
multidimensional resources model. This paper describes how the algorithm is used for dynamically load
balancing and parallelizing the nightly tests of a digital television content-processing embedded device.

DOI: 10.4018/978-1-4666-2056-8.ch005

89

A Resource-Aware Dynamic Load-Balancing Parallelization Algorithm

In some applications, however, neither subtasks
nor processing entities are mirrors of each other.
Some subtasks can be executed only on one or
more processing nodes, as only these nodes offer
the services or configuration the subtask requires.
In this respect, subtasks are recognized as having
certain requirements, and each processing entity as
offering a set of capabilities. Subtasks need to be
assigned to nodes meeting the subtask’s require-
ments. If no node offers the required capabilities,
the subtask cannot be executed.

Furthermore, the complete set of subtasks
often needs to be completed as soon as possible.
Some subtasks are more time-consuming than
other ones, and even the processing time of one
subtask can differ between two executions. Hence
the varying execution length requires a dynamic
assignment process. Assigning these subtasks is
multidimensional: one dimension for each require-
ment, and another for the time constraints.

The next section describes the basic algorithm
for parallelizing tasks with a farmer-worker de-
pendable model. Afterward, a new algorithm is
described that assigns tasks dynamically, such that
the requirements of each subtask are met and the
complete set of subtasks is finished with minimal
delay, even if some processing nodes fail. A test
case is covered in which this algorithm assigns
nightly tests to devices that process digital televi-
sion streams in the telecom domain. Finally, some
future work is described.

THE FARMER-WORKER ALGORITHM
AND ITS DEPENDABLE EXTENSION

The dependable multiresource dynamic algorithm
is based on an elaboration of the traditional farmer-
worker algorithm. In the most commonly known
basic farmer-worker model, a “farmer” process-
ing entity grabs the input data or tasks, divides
the tasks into subtasks, and feeds the subtasks in
parallel to processing entities called “workers.”

The farmer collects the results and glues them
together to one resulting processed output.

The farmer needs to go through quite some
sequential processing between two runs. The
input data needs to be grabbed, divided, and dis-
patched to the workers, and afterward the worker’s
processing output needs to be collected, merged,
and finalized to one result. In video processing,
where video is received from a camera and im-
ages extracted and divided for further processing,
real-time behavior is important. Furthermore the
failure of one worker endangers the processing
of the complete task.

Therefore a dependable extension of the
farmer-worker model has been proposed (De
Florio, Deconinck, & Lauwereins, 1997) and,
later, a corresponding framework library, RAFT-
net (Leeman, Leeman, De Florio, & Deconinck,
2003). This extension describes a “dispatcher”
and a “collector.” The workers subscribe them-
selves for processing with the dispatcher. The
farmer grabs the input data and sends the list of
subtasks to the dispatcher, which assigns them to
idle workers. While these workers are processing
subtasks and the dispatcher is assigning them, the
farmer can grab the input data for the next run.

Once a worker has processed a subtask, it noti-
fies the dispatcher of its idle state so that a new
subtask can be assigned to it. The output is sent to
the collector. This entity collects the output from
each worker and notifies the dispatcher that this
subtask has been processed. From the moment a
subtask is finished, the dispatcher also notifies the
farmer, which sends as a response the correspond-
ing subtask from the next run to the dispatcher.

Other algorithms have been proposed by
similarly introducing an additional farmer or
collector process in a flat (Chan & Abramson,
2001) or a hierarchical model (Aida, Futakata,
& Tomotaka, 2006; Berthold, Dieterle, Loogen,
& Priebe, 2008). Further improvement can be
achieved by exploiting algorithm characteristics
like dynamic grain size, denoting the task can be

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/resource-aware-dynamic-load-balancing/68945

Related Content

Boosting Semantic Relations for Example Population in Concept Learning
Ming-Chi Liu, Kinshuk, Yueh-Min Huangand Dunwei Wen (2012). Intelligent and Adaptive Learning

Systems: Technology Enhanced Support for Learners and Teachers (pp. 165-181).

www.irma-international.org/chapter/boosting-semantic-relations-example-population/56079

Decision Support Fundamentals
 (2013). Decision Control, Management, and Support in Adaptive and Complex Systems: Quantitative

Models (pp. 1-44).

www.irma-international.org/chapter/decision-support-fundamentals/74432

A Collective-Intelligence View on the Linux Kernel Developer Community
Haoxiang Xia (2012). Systems Approaches to Knowledge Management, Transfer, and Resource

Development (pp. 188-200).

www.irma-international.org/chapter/collective-intelligence-view-linux-kernel/68218

Improvement of 2-Partition Entropy Approach Using Type-2 Fuzzy Sets for Image Thresholding
Ouarda Assas (2015). International Journal of Applied Evolutionary Computation (pp. 33-48).

www.irma-international.org/article/improvement-of-2-partition-entropy-approach-using-type-2-fuzzy-sets-for-image-

thresholding/136068

Product Lifecycle Management Revisited
Lars Taxén (2010). Using Activity Domain Theory for Managing Complex Systems (pp. 242-262).

www.irma-international.org/chapter/product-lifecycle-management-revisited/39680

http://www.igi-global.com/chapter/resource-aware-dynamic-load-balancing/68945
http://www.irma-international.org/chapter/boosting-semantic-relations-example-population/56079
http://www.irma-international.org/chapter/decision-support-fundamentals/74432
http://www.irma-international.org/chapter/collective-intelligence-view-linux-kernel/68218
http://www.irma-international.org/article/improvement-of-2-partition-entropy-approach-using-type-2-fuzzy-sets-for-image-thresholding/136068
http://www.irma-international.org/article/improvement-of-2-partition-entropy-approach-using-type-2-fuzzy-sets-for-image-thresholding/136068
http://www.irma-international.org/chapter/product-lifecycle-management-revisited/39680

