
  ���

Chapter VII
Complex-Valued Symmetric 

Radial Basis Function Network 
for Beamforming

Sheng Chen
University of Southampton, UK

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTrODUCION

The radial basis function (RBF) network is a popular artificial neural network (ANN) architecture that has found 
wide-ranging applications in many diverse fields of engineering, see for example, (Chen et al., 1990; Leonard & 
Kramer, 1991; Chen et al., 1993; Caiti & Parisini, 1994; Gorinevsky et al., 1996; Cha & Kassam, 1996; Rosenblum 
& Davis, 1996; Refaee et al., 1999; Muraki et al., 2001; Mukai, et al., 2002; Su et al., 2002; Li et al., 2004; Lee 
& Choi, 2004; Ng et al., 2004; Oyang et al., 2005; Acir et al., 2005; Tan et al., 2005). The RBF method is a clas-

ABSTrACT

The complex-valued radial basis function (RBF) network proposed by Chen et al. (1994) has found many ap-
plications for processing complex-valued signals, in particular, for communication channel equalization and 
signal detection. This complex-valued RBF network, like many other existing RBF modeling methods, constitutes 
a black-box approach that seeks typically a sparse model representation extracted from the training data. Adopt-
ing black-box modeling is appropriate, if no a priori information exists regarding the underlying data generating 
mechanism. However, a fundamental principle in practical data modelling is that if there exists a priori informa-
tion concerning the system to be modeled it should be incorporated in the modeling process. Many complex-val-
ued signal processing problems, particularly those encountered in communication signal detection, have some 
inherent symmetric properties. This contribution adopts a grey-box approach to complex-valued RBF modeling 
and develops a complex-valued symmetric RBF (SRBF) network model. The application of this SRBF network is 
demonstrated using nonlinear beamforming assisted detection for multiple-antenna aided wireless systems that 
employ complex-valued modulation schemes. Two training algorithms for this complex-valued SRBF network are 
proposed. The first method is based on a modified version of the cluster-variation enhanced clustering algorithm, 
while the second method is derived by modifying the orthogonal-forward-selection procedure based on Fisher ratio 
of class separability measure. The effectiveness of the proposed complex-valued SRBF network and the efficiency 
of the two training algorithms are demonstrated in nonlinear beamforming application. 
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sical numerical technique for nonlinear functional interpolation with real-valued data (Powell, 1987). A renewed 
interest in the RBF method coincided with a recent resurgence in the field of ANNs. Connections between the 
RBF method and the ANN was made and the RBF model was re-interpreted as a one-hidden-layer feedforward 
network (Broomhead & Lowe, 1988; Poggio & Girosi, 1990). Specifically, by adopting the ANN interpretation, 
a RBF model can be considered as a processing structure consisting of a hidden layer and an output layer. Each 
node in the hidden layer has a radially symmetric response around a node parameter vector called a centre, with 
the hidden node’s response shape determined by the chosen basis function as well as a node width parameter, 
while the output layer is a set of linear combiners with linear connection weights. 

The parameters of the RBF network include its centre vectors and variances or covariance matrices of the 
basis functions as well as the weights that connect the RBF nodes to the network output. All the parameters of 
a RBF network can be learned together via nonlinear optimisation using the gradient based algorithms (Chen et 
al., 1990a; An et al., 1993; McLoone et al., 1998; Karayiannis et al., 2003; Peng et al., 2003), the evolutionary 
algorithms (Whitehead & Choate, 1994; Whitehead, 1996; Gonzalez et al., 2003) or the expectation-maximisation 
algorithm (Yang & Chen, 1998; Mak & Kung, 2000). Generally, learning based on such a nonlinear approach is 
computationally expensive and may encounter the problem of local minima. Additionally, the network structure 
or the number of RBF nodes has to be determined via other means, typically based on cross validation. Alterna-
tively, clustering algorithms can be applied to find the RBF centre vectors as well as the associated basis function 
variances (Moody & Darken, 1989; Chen et al., 1992; Chen, 1995; Uykan, 2003). This leaves the RBF weights to 
be determined by the usual linear least squares solution. Again, the number of the clusters has to be determined 
via other means, such as cross validation. One of the most popular approaches for constructing RBF networks 
however is to formulate the problem as a linear learning one by considering the training input data points as 
candidate RBF centres and employing a common variance for every RBF node. A parsimonious RBF network 
is then identified using the orthogonal least squares (OLS) algorithm (Chen et al., 1989; Chen et al., 1991; Chen 
et al., 1999; Chen et al., 2003; Chen et al., 2004a). 

Many practical signal processing applications deal with complex-valued signals and data. This motivates the 
research in complex-valued ANNs, which have found wide-ranging applications in complex-valued signal pro-
cessing problems (Uncini et al., 1999; Kim & Adali, 2003; Li et al., 2005; Yang & Bose, 2005; Hirose, 2006). A 
particular complex-valued ANN architecture proposed by Chen et al. (1994) is the complex-valued RBF network, 
which takes the following form 
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where ( )y k C∈  (C  being the field of complex-valued numbers) and ( ) Lk C∈x  denote the complex-valued RBF 
network output and input vector, respectively, cN  denotes the number of RBF units, iw  are the complex-valued 
RBF weights, L

i C∈c  are the complex-valued RBF centres, ρ2 is the positive RBF variance, and ( )•   is the real-
valued radial basis function. When ( )y k  and iw  are real-valued, this complex-valued RBF network reduces to the 
special case of the usual real-valued RBF network (Moody & Darken, 1989; Chen et al., 1991). Each RBF unit in 
the complex-valued RBF network (1) can be interpreted as some underlying probability density function (Chen et 
al., 1994). Such a physical interpretation makes this complex-valued RBF network a powerful tool in processing 
complex-valued signals, particularly, in applications to communication channel equalisation and signal detection 
(Chen et al., 1994a; Cha & Kassam, 1995; Gan et al., 1999; Deng et al., 2002; Botoca & Budura, 2006). 

Like many existing neural network models, this complex-valued RBF network, however, constitutes a black-
box approach that seeks a sparse model representation extracted from the training data. Adopting black-box 
modelling is appropriate, if no a priori information exists regarding the underlying data generating mechanism. 
However, if there exists a priori information concerning the system to be modelled, it should be incorporated in 
the modelling process. The use of available prior knowledge in data modelling often leads to an improved per-
formance. For real-valued signal processing applications, it has been recognised that many real-life phenomena 
exhibit inherent symmetry and these properties are hard to infer accurately from noisy data with the aid of black-
box real-valued neural network models. However, by imposing appropriate symmetry on the model’s structure, 
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