
�0�  

Chapter V
Global Stability Analysis for 
Complex-Valued Recurrent 

Neural Networks and Its 
Application to Convex 
Optimization Problems

Mitsuo Yoshida
Kyoto Institute of Technology, Japan

Takehiro Mori
Kyoto Institute of Technology, Japan

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTrODUCTION

Recurrent neural networks whose neurons are fully interconnected have been utilized to implement associative 
memories and solve optimization problems. These networks are regarded as nonlinear dynamical feedback systems. 
Stability properties of this class of dynamical networks are an important issue from applications point of view.

ABSTrACT

Global stability analysis for complex-valued artificial recurrent neural networks seems to be one of yet-unchal-
lenged topics in information science. This chapter presents global stability conditions for discrete-time and continu-
ous-time complex-valued recurrent neural networks, which are regarded as nonlinear dynamical systems. Global 
asymptotic stability conditions for these networks are derived by way of suitable choices of activation functions. 
According to these stability conditions, there are classes of discrete-time and continuous-time complex-valued 
recurrent neural networks whose equilibrium point is globally asymptotically stable. Furthermore, the conditions 
are shown to be successfully applicable to solving convex programming problems, for which real field solution 
methods are generally tedious.
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On the other hand, several models of neural networks that can deal with complex numbers, the complex-val-
ued neural networks, have come to forth in recent years. These networks have states, connection weights, and 
activation functions, which are all complex-valued. Such networks have been studied in terms of their abilities of 
information processing, because they possess attractive features which do not exist in their real-valued counter-
parts (Hirose, 2003; Kuroe, Hashimoto & Mori, 2001, 2002; Kuroe, Yoshida & Mori, 2003; Nitta, 2000; Takeda 
& Kishigami, 1992; Yoshida, Mori & Kuroe, 2004; Yoshida & Mori, 2007). Generally, activation functions of 
neural networks crucially determine their dynamic behavior. In complex-valued neural networks, there is a greater 
choice of activation functions compared to real-valued networks. However, the question of appropriate activation 
functions has been paid insufficient attention to in the past. 

Local asymptotic stability conditions for complex-valued recurrent neural networks with an energy function 
defined on the complex domain have been studied earlier and synthesis of complex-valued associative memories 
has been realized (Kuroe et al., 2001, 2002). However, studies on their application to global optimization problems 
and theoretical analysis for global asymptotic stability conditions remain yet-unchallenged topics.

The purpose of this chapter is to analyze global asymptotic stability for complex-valued recurrent neural 
networks. Two types of complex-valued recurrent neural networks are considered: discrete-time model and 
continuous-time model. We present global asymptotic stability conditions for both models of the complex-val-
ued recurrent neural networks. To ensure global stability, classes of complex-valued functions are defined as 
the activation functions, and therewith several stability conditions are obtained. According to these conditions, 
there are classes of discrete-time and continuous-time complex-valued recurrent neural networks whose com-
mon equilibrium point is globally asymptotically stable. Furthermore, the obtained conditions are shown to be 
successfully applicable to solving convex programming problems.

The chapter is organized as follows. In Background, a brief summary of applications to associative memories 
and optimization problems in real-valued recurrent neural networks is presented. Moreover, results on stability 
analysis and applications of these real-valued neural networks are introduced. Next, models of discrete-time and 
continuous-time complex-valued neural networks are described. For activation functions of these networks, two 
classes of complex-valued function are defined. In the next section, global asymptotic stability conditions for the 
discrete-time and continuous-time complex-valued neural networks are proved, respectively. Some discussions 
thereof are also given. Furthermore, applications of complex-valued neural networks to convex programming 
problems with numerical examples are shown in the subsequent section. Finally, concluding remarks and future 
research directions are given.

Before going into the body of the chapter, we first list the glossary of symbols. In the following, the sets of  n 
× m  real and complex matrices are defined by n m×R , n m×C , respectively. In denotes the identity matrix in Rn×n. R+ 
means the nonnegative space in R defined by { | , 0}x x x= ∈ ≥+R R . For a complex number x ∈ C, | |x   stands 
for the absolute value, and x   is the complex conjugate number. Re(x) denotes the real part of x ∈ C, and Im(x) 
denotes the imaginary part of x ∈ C. For any pair of complex numbers ,x y ∈C , ,x y   denotes the inner product 
defined by ,x y xy= . For a vector x ∈ Cn, x   means the Euclidean norm defined by 2 *=x x x. For a complex 
matrix n m×∈X C   represented by { }ijx=X  , tX   and *X  denotes the transpose and conjugate transpose, respectively. 
If n n×∈X C   is a Hermitian matrix ( *=X X ), 0>X  denotes that X is positive definite. min ( )X  and max ( )X   represent 
the minimum and the maximum eigenvalue of a Hermitian matrix X, respectively. | |X   represents the element-wise 
absolute-value matrix defined by | | {| |}ijx=X , and 

2
X  is the induced matrix 2-norm defined by max2

( )= *X X X . 
Suppose that X  is an n × n real matrix with nonnegative off-diagonal elements, then X  is a nonsingular M-matrix 
if and only if all principal minors of  X are positive.

BACKGrOUND

Proposals of models for neural networks and its applications by Hopfield et al. have triggered the research inter-
ests of neural networks in the last two decades (Hopfield, 1984; Hopfield & Tank, 1985; Tank & Hopfield, 1986). 
They introduced the idea of an energy function to formulate a way of understanding the computational ability 
that performed by fully connected recurrent neural networks. The energy functions have been applied to vari-
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