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INTRODUCTION

Sorting is one of the widely studied algorithmic 
problems in the computer science (Cormen, 
Leiserson, Rivest, & Stein 2001; Martin, 1971). 
It appears in a wide variety of applications and 
evolves with various computational architec-
tures (Akl, 1985). Hence, the efficient imple-
mentations of sorting algorithms profoundly 
influence the performance of those applications. 
As the computer architecture evolved, there is a 

continuing requirement to design efficient sort-
ing algorithms to use the underlying hardware’s 
computing power. Current high-end graphics 
processing units (GPUs), contain up to hundreds 
cores per chip, are very popular in the high 
performance computing community. GPU is a 
massively multi-threaded processor and expects 
the thousands of concurrent threads to fully 
utilize its computing power. The ease of access 
GPUs by using Compute Unified Device Archi-
tecture (CUDA) (NVIDIA, 2009), as opposite 
to graphic APIs, has made the supercomputing 
available to the mass. The advantages of the 

Parallel Shellsort Algorithm for 
Many-Core GPUs with CUDA

Chun-Yuan	Lin,	Chang	Gung	University,	Taiwan

Wei	Sheng	Lee,	National	Tsing	Hua	University,	Taiwan

Chuan	Yi	Tang,	Providence	University,	Taiwan

ABSTRACT
Sorting	is	a	classic	algorithmic	problem	and	its	importance	has	led	to	the	design	and	implementation	of	various	
sorting	algorithms	on	many-core	graphics	processing	units	(GPUs).	CUDPP	Radix	sort	is	the	most	efficient	
sorting	on	GPUs	and	GPU	Sample	sort	is	the	best	comparison-based	sorting.	Although	the	implementations	
of	these	algorithms	are	efficient,	they	either	need	an	extra	space	for	the	data	rearrangement	or	the	atomic	
operation	for	the	acceleration.	Sorting	applications	usually	deal	with	a	large	amount	of	data,	thus	the	memory	
utilization	is	an	important	consideration.	Furthermore,	these	sorting	algorithms	on	GPUs	without	the	atomic	
operation	support	can	result	in	the	performance	degradation	or	fail	to	work.	In	this	paper,	an	efficient	imple-
mentation	of	a	parallel	shellsort	algorithm,	CUDA	shellsort,	is	proposed	for	many-core	GPUs	with	CUDA.	
Experimental	results	show	that,	on	average,	the	performance	of	CUDA	shellsort	is	nearly	twice	faster	than	
GPU	quicksort	and	37%	faster	than	Thrust	mergesort	under	uniform	distribution.	Moreover,	its	performance	
is	the	same	as	GPU	sample	sort	up	to	32	million	data	elements,	but	only	needs	a	constant	space	usage.	CUDA	
shellsort	is	also	robust	over	various	data	distributions	and	could	be	suitable	for	other	many-core	architectures.
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computing power and memory bandwidth for 
modern GPUs have made porting applications 
on it become a very important issue.

Several excellent results for sorting al-
gorithms on GPUs are obtained, including 
the internal and external sorting algorithms 
(Govindaraju, Gray, Kumar, & Manocha, 2006; 
Leischner, Osipov, & Sanders, 2010; Satish, 
Harris, & Garland, 2009). Among the internal 
sorting algorithms, CUDPP radix sort (Satish, 
Harris, & Garland, 2009) is currently the fastest 
sorting on GPUs and GPU sample sort (Leisch-
ner, Osipov, & Sanders, 2010) is considerably 
the fastest comparison-based sorting on GPUs. 
Comparing to CUDPP radix sort, GPU sample 
sort is more flexible and suitable for sorting 
the keys with a large size and is more robust 
over various data distributions, although it is 
slower than CUDPP radix sort on 32-bit keys. 
Both of them are the art of implementations 
for sorting algorithms on GPUs. However, the 
implementations for most of sorting algorithms 
on GPUs, including above algorithms, need 
either an extra space or the atomic operation 
support by GPUs.

In this paper, we address the above prob-
lems and propose a comparison-based sorting, 
shellsort, on GPUs, namely CUDA shellsort, 
that releases those constraints. In CUDA shell-
sort, we exploited the inherently embarrassing 
parallelism among each pass of shellsort and 
used the per-thread registers to accelerate the 
insertion operation on each subsequence (block) 
within a shellsort pass. Until the parallelism 
of a shellsort pass was insufficient (ex. <2048 
concurrent threads), we switched it to the 
bitonic merge sort to sort blocks concurrently 
(ex. 2048-element blocks). After all blocks had 
sorted by the bitonic merge sort, an odd-even 
bitonic merge was used to rearrange the out-
of-order data elements between two adjacent 
blocks. We demonstrated how to impose a 
block-wise structure on the parallel shellsort 
algorithm, bitonic merge sort, and odd-even 
bitonic merge. We also used registers to maintain 
a heap structure to avoid the shared memory 
bank conflict and result the efficient memory 
bandwidth utilization while keeping high GPU 

cores occupancy. The implementation of CUDA 
shellsort extracts the computing power of GPU 
cores, shared memory, and register file. CUDA 
shellsort needs O(logn) (n is a ratio of a size of 
input sequence and a given threshold) passes 
of memory access and is nearly the same as 
O(logkn) passes of the multi-way approach sug-
gested by the literature (Leischner, Osipov, & 
Sanders, 2010). In the experimental tests, under 
the uniform distribution, CUDA shellsort is, 
on average, 37% faster than Thrust mergesort 
and two times faster than GPU quicksort. The 
performance of CUDA shellsort is nearly the 
same as that of GPU sample sort up to 32 mil-
lion data elements, but only needs a constant 
space usage. These results showed that CUDA 
shellsort is one of the fastest comparison-based 
sorting on GPUs and is robust over various 
data distributions evaluated as by the literature 
(Helman, Bader, & JaJa, 1998).

The rest of this paper is organized as fol-
lows. The next section reviews some related 
work for sorting algorithms on GPUs. The 
shellsort algorithm is then briefly introduced. 
The following section provides an overview of 
CUDA shellsort algorithm, followed by detailed 
implementations. An analysis of time and space 
complexities of CUDA shellsort is provided. 
The last section presents the experimental 
results for CUDA shellsort under various data 
distributions.

RELATED WORK

Sorting algorithm is the most wildly studied 
subject in the computer science and there is 
too much work done in the sorting problems to 
review it here. Hence, we focus on the parallel 
sorting algorithms that exploit the modern GPU 
architectures but do not discuss the sorting 
algorithms implemented by using graphic API, 
such as GPGPU.

GPU sample sort (Leischner, Osipov, & 
Sanders, 2010) is currently the state of the art 
comparison-based sorting on modern GPUs. It 
firstly randomly selects M-1 splitters from N 
input data elements, then sorts the M-1 split-
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