
International Journal of Grid and High Performance Computing, 4(2), 1-16, April-June 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Atomic	Operation,	CUDA,	Graphics	Processing	Units	(GPUs),	In-Place	Algorithm,	Shellsort

INTRODUCTION

Sorting is one of the widely studied algorithmic
problems in the computer science (Cormen,
Leiserson, Rivest, & Stein 2001; Martin, 1971).
It appears in a wide variety of applications and
evolves with various computational architec-
tures (Akl, 1985). Hence, the efficient imple-
mentations of sorting algorithms profoundly
influence the performance of those applications.
As the computer architecture evolved, there is a

continuing requirement to design efficient sort-
ing algorithms to use the underlying hardware’s
computing power. Current high-end graphics
processing units (GPUs), contain up to hundreds
cores per chip, are very popular in the high
performance computing community. GPU is a
massively multi-threaded processor and expects
the thousands of concurrent threads to fully
utilize its computing power. The ease of access
GPUs by using Compute Unified Device Archi-
tecture (CUDA) (NVIDIA, 2009), as opposite
to graphic APIs, has made the supercomputing
available to the mass. The advantages of the

Parallel Shellsort Algorithm for
Many-Core GPUs with CUDA

Chun-Yuan	Lin,	Chang	Gung	University,	Taiwan

Wei	Sheng	Lee,	National	Tsing	Hua	University,	Taiwan

Chuan	Yi	Tang,	Providence	University,	Taiwan

ABSTRACT
Sorting	is	a	classic	algorithmic	problem	and	its	importance	has	led	to	the	design	and	implementation	of	various	
sorting	algorithms	on	many-core	graphics	processing	units	(GPUs).	CUDPP	Radix	sort	is	the	most	efficient	
sorting	on	GPUs	and	GPU	Sample	sort	is	the	best	comparison-based	sorting.	Although	the	implementations	
of	these	algorithms	are	efficient,	they	either	need	an	extra	space	for	the	data	rearrangement	or	the	atomic	
operation	for	the	acceleration.	Sorting	applications	usually	deal	with	a	large	amount	of	data,	thus	the	memory	
utilization	is	an	important	consideration.	Furthermore,	these	sorting	algorithms	on	GPUs	without	the	atomic	
operation	support	can	result	in	the	performance	degradation	or	fail	to	work.	In	this	paper,	an	efficient	imple-
mentation	of	a	parallel	shellsort	algorithm,	CUDA	shellsort,	is	proposed	for	many-core	GPUs	with	CUDA.	
Experimental	results	show	that,	on	average,	the	performance	of	CUDA	shellsort	is	nearly	twice	faster	than	
GPU	quicksort	and	37%	faster	than	Thrust	mergesort	under	uniform	distribution.	Moreover,	its	performance	
is	the	same	as	GPU	sample	sort	up	to	32	million	data	elements,	but	only	needs	a	constant	space	usage.	CUDA	
shellsort	is	also	robust	over	various	data	distributions	and	could	be	suitable	for	other	many-core	architectures.

DOI: 10.4018/jghpc.2012040101

2 International Journal of Grid and High Performance Computing, 4(2), 1-16, April-June 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

computing power and memory bandwidth for
modern GPUs have made porting applications
on it become a very important issue.

Several excellent results for sorting al-
gorithms on GPUs are obtained, including
the internal and external sorting algorithms
(Govindaraju, Gray, Kumar, & Manocha, 2006;
Leischner, Osipov, & Sanders, 2010; Satish,
Harris, & Garland, 2009). Among the internal
sorting algorithms, CUDPP radix sort (Satish,
Harris, & Garland, 2009) is currently the fastest
sorting on GPUs and GPU sample sort (Leisch-
ner, Osipov, & Sanders, 2010) is considerably
the fastest comparison-based sorting on GPUs.
Comparing to CUDPP radix sort, GPU sample
sort is more flexible and suitable for sorting
the keys with a large size and is more robust
over various data distributions, although it is
slower than CUDPP radix sort on 32-bit keys.
Both of them are the art of implementations
for sorting algorithms on GPUs. However, the
implementations for most of sorting algorithms
on GPUs, including above algorithms, need
either an extra space or the atomic operation
support by GPUs.

In this paper, we address the above prob-
lems and propose a comparison-based sorting,
shellsort, on GPUs, namely CUDA shellsort,
that releases those constraints. In CUDA shell-
sort, we exploited the inherently embarrassing
parallelism among each pass of shellsort and
used the per-thread registers to accelerate the
insertion operation on each subsequence (block)
within a shellsort pass. Until the parallelism
of a shellsort pass was insufficient (ex. <2048
concurrent threads), we switched it to the
bitonic merge sort to sort blocks concurrently
(ex. 2048-element blocks). After all blocks had
sorted by the bitonic merge sort, an odd-even
bitonic merge was used to rearrange the out-
of-order data elements between two adjacent
blocks. We demonstrated how to impose a
block-wise structure on the parallel shellsort
algorithm, bitonic merge sort, and odd-even
bitonic merge. We also used registers to maintain
a heap structure to avoid the shared memory
bank conflict and result the efficient memory
bandwidth utilization while keeping high GPU

cores occupancy. The implementation of CUDA
shellsort extracts the computing power of GPU
cores, shared memory, and register file. CUDA
shellsort needs O(logn) (n is a ratio of a size of
input sequence and a given threshold) passes
of memory access and is nearly the same as
O(logkn) passes of the multi-way approach sug-
gested by the literature (Leischner, Osipov, &
Sanders, 2010). In the experimental tests, under
the uniform distribution, CUDA shellsort is,
on average, 37% faster than Thrust mergesort
and two times faster than GPU quicksort. The
performance of CUDA shellsort is nearly the
same as that of GPU sample sort up to 32 mil-
lion data elements, but only needs a constant
space usage. These results showed that CUDA
shellsort is one of the fastest comparison-based
sorting on GPUs and is robust over various
data distributions evaluated as by the literature
(Helman, Bader, & JaJa, 1998).

The rest of this paper is organized as fol-
lows. The next section reviews some related
work for sorting algorithms on GPUs. The
shellsort algorithm is then briefly introduced.
The following section provides an overview of
CUDA shellsort algorithm, followed by detailed
implementations. An analysis of time and space
complexities of CUDA shellsort is provided.
The last section presents the experimental
results for CUDA shellsort under various data
distributions.

RELATED WORK

Sorting algorithm is the most wildly studied
subject in the computer science and there is
too much work done in the sorting problems to
review it here. Hence, we focus on the parallel
sorting algorithms that exploit the modern GPU
architectures but do not discuss the sorting
algorithms implemented by using graphic API,
such as GPGPU.

GPU sample sort (Leischner, Osipov, &
Sanders, 2010) is currently the state of the art
comparison-based sorting on modern GPUs. It
firstly randomly selects M-1 splitters from N
input data elements, then sorts the M-1 split-

14 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/parallel-shellsort-algorithm-many-

core/66353

Related Content

Service Oriented Storage System Grid
Yuhui Deng, Frank Zhigang Wangand Na Helian (2009). Handbook of Research on

Grid Technologies and Utility Computing: Concepts for Managing Large-Scale

Applications (pp. 126-135).

www.irma-international.org/chapter/service-oriented-storage-system-grid/20515

An Energy and Fault Aware Mechanism of Wireless Sensor Networks Using

Multiple Mobile Agents
Rajendra Kumar Dwivediand Rakesh Kumar (2020). International Journal of

Distributed Systems and Technologies (pp. 22-41).

www.irma-international.org/article/an-energy-and-fault-aware-mechanism-of-wireless-sensor-

networks-using-multiple-mobile-agents/256205

Supercomputing in the Study and Stimulation of the Brain
Laura Dipietro, Seth Elkin-Frankston, Ciro Ramos-Estebanezand Timothy Wagner

(2021). Handbook of Research on Methodologies and Applications of

Supercomputing (pp. 290-300).

www.irma-international.org/chapter/supercomputing-in-the-study-and-stimulation-of-the-

brain/273408

FSAQoS: A Fuzzy-Based System for Assessment of QoS of V2V

Communication Links in SDN-VANETs and Its Performance Evaluation
Ermioni Qafzezi, Kevin Bylykbashi, Phudit Ampririt, Makoto Ikeda, Keita Matsuoand

Leonard Barolli (2022). International Journal of Distributed Systems and

Technologies (pp. 1-13).

www.irma-international.org/article/fsaqos/300338

Service and Management Oriented Traffic Information Grid
Yu Fang, Dong Liang Zhang, Chun Gang Yan, Hong Zhong Chenand Changjun Jiang

(2012). Technology Integration Advancements in Distributed Systems and Computing

(pp. 283-295).

www.irma-international.org/chapter/service-management-oriented-traffic-information/64454

http://www.igi-global.com/article/parallel-shellsort-algorithm-many-core/66353
http://www.igi-global.com/article/parallel-shellsort-algorithm-many-core/66353
http://www.igi-global.com/article/parallel-shellsort-algorithm-many-core/66353
http://www.irma-international.org/chapter/service-oriented-storage-system-grid/20515
http://www.irma-international.org/article/an-energy-and-fault-aware-mechanism-of-wireless-sensor-networks-using-multiple-mobile-agents/256205
http://www.irma-international.org/article/an-energy-and-fault-aware-mechanism-of-wireless-sensor-networks-using-multiple-mobile-agents/256205
http://www.irma-international.org/chapter/supercomputing-in-the-study-and-stimulation-of-the-brain/273408
http://www.irma-international.org/chapter/supercomputing-in-the-study-and-stimulation-of-the-brain/273408
http://www.irma-international.org/article/fsaqos/300338
http://www.irma-international.org/chapter/service-management-oriented-traffic-information/64454

