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Chapter  7.6

INTRODUCTION

The design and semantic definition of program-
ming languages has occupied computer scientists 
for almost half a century. Design questions centre 
upon the style or paradigm of the language, (e.g. 
functional, logic, imperative or object oriented). 
More detailed issues concern the nature and con-
tent of its type system, its model of storage and its 
underlying control mechanisms. Semantic ques-
tions relate to the form and nature of programming 
language semantics (Tennent, 1981; Stoy, 1977; 

Milne, 1976; Fernandez, 2004). For instance, how 
is the semantic content of a language determined 
and how is it expressed?

Presumably, one cannot entirely divorce the 
design of a language from its semantic content; one 
is not just designing a language in order to construct 
meaningless strings of symbols. A programming 
language is a vehicle for the expression of ideas 
and for the articulation of solutions to problems; 
and surely issues of meaning are central to this. 
But should semantic considerations enter the 
picture very early on in the process of design, or 
should they come as an afterthought; i.e. should 
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we first design the language and then proceed to 
supply it with a semantic definition?

An influential perspective on this issue is to 
be found in one the most important early papers 
on the semantics of programming languages 
(Strachey C., 2000).

I am not only temperamentally a Platonist and 
prone to talking about abstracts if I think they 
throw light on a discussion, but I also regard 
syntactical problems as essentially irrelevant to 
programming languages at their present state of 
development. In a rough and ready sort of way, it 
seems to be fair to think of the semantics as being 
what we want to say and the syntax as how to say 
it. In these terms the urgent task in programming 
languages is to explore the field of semantic pos-
sibilities….When we have discovered the main 
outlines and the principal peaks we can go about 
describing a suitable neat and satisfactory nota-
tion for them. But first we must try to get a better 
understanding of the processes of computing and 
their description in programming languages. In 
computing we have what I believe to be a new field 
of mathematics which is at least as important as 
that opened up by the discovery (or should it be 
invention) of the calculus. 

Apparently, the field of semantic possibilities 
must be laid out prior to the design of any actual 
language i.e., its syntax. More explicitly, the things 
that we may refer to and manipulate, and the pro-
cesses we may call upon to control them, needs to 
be settled before any actual syntax is defined. We 
shall call this the Semantics First (SF) principle. 
According to it, one does not design a language 
and then proceed to its semantic definition as a 
post-hoc endeavour; semantics must come first.

This leads to the second part of Strachey’s 
advice. In the last sentence of the quote he takes 
computing to be a new branch of mathematics. 
At face value this might be taken to mean that 
the activity of programming is somehow a math-
ematical one. This has certainly been suggested 

elsewhere (Hoare, 1969) and criticized by several 
authors e.g. (Colburn T. R., 2000; Fetzer, 1988; 
Colburn T., 2007). But, whatever its merits, this 
does not seem to be what Strachey is concerned 
with. The early part of the quote suggests that he 
is referring to programming languages and their 
underlying structures. And his remark seems best 
interpreted to mean that (semantically) program-
ming languages are, in some way, mathematical 
structures. Indeed, this is in line with other pub-
lications (Strachey C., 1965) where the underly-
ing ontology of a language is taken to consist of 
mathematical objects. This particular perspective 
found its more exact formulation in denotational 
semantics (Stoy, 1977; Milne, 1976), where the 
theory of complete lattices supplied the back-
ground mathematical framework. This has since 
been expanded to other frameworks including 
category theory (Oles, 1982; Crole, 1993).

However, we shall interpret this more broadly 
i.e., in a way that is neutral with respect to the host 
theory of mathematical structures (e.g. set theory, 
category theory, or something else). We shall take 
it to mean that programming languages are, via 
their provided semantics, mathematical theories 
in their own right. We shall refer to this principle 
as the Mathematical Thesis (MT).

Exactly what MT and SF amount to, whether 
they are true, how they are connected, and what 
follows from them, will form the main focus of this 
paper. But before we embark on any consideration 
of these, we need to clarify what we understand 
by the terms mathematical theory and semantics.

MATHEMATICAL THEORIES

The nature of mathematical theories is one of the 
central concerns of the philosophy of mathemat-
ics (Shapiro, 2004), and it is not one that we can 
sensibly address here. But we do need to say 
something; otherwise our claim is left hanging 
in the air. Roughly, we shall be concerned with 
theories that are axiomatic in the logical sense. 
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