
1706

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.6

INTRODUCTION

The design and semantic definition of program-
ming languages has occupied computer scientists
for almost half a century. Design questions centre
upon the style or paradigm of the language, (e.g.
functional, logic, imperative or object oriented).
More detailed issues concern the nature and con-
tent of its type system, its model of storage and its
underlying control mechanisms. Semantic ques-
tions relate to the form and nature of programming
language semantics (Tennent, 1981; Stoy, 1977;

Milne, 1976; Fernandez, 2004). For instance, how
is the semantic content of a language determined
and how is it expressed?

Presumably, one cannot entirely divorce the
design of a language from its semantic content; one
is not just designing a language in order to construct
meaningless strings of symbols. A programming
language is a vehicle for the expression of ideas
and for the articulation of solutions to problems;
and surely issues of meaning are central to this.
But should semantic considerations enter the
picture very early on in the process of design, or
should they come as an afterthought; i.e. should

Raymond Turner
University of Essex, UK

Programming Languages
as Mathematical Theories

ABSTRACT

That computer science is somehow a mathematical activity was a view held by many of the pioneers of
the subject, especially those who were concerned with its foundations. At face value it might mean that
the actual activity of programming is a mathematical one. Indeed, at least in some form, this has been
held. But here we explore a different gloss on it. We explore the claim that programming languages are
(semantically) mathematical theories. This will force us to discuss the normative nature of semantics, the
nature of mathematical theories, the role of theoretical computer science and the relationship between
semantic theory and language design.

DOI: 10.4018/978-1-61350-456-7.ch7.6

1707

Programming Languages as Mathematical Theories

we first design the language and then proceed to
supply it with a semantic definition?

An influential perspective on this issue is to
be found in one the most important early papers
on the semantics of programming languages
(Strachey C., 2000).

I am not only temperamentally a Platonist and
prone to talking about abstracts if I think they
throw light on a discussion, but I also regard
syntactical problems as essentially irrelevant to
programming languages at their present state of
development. In a rough and ready sort of way, it
seems to be fair to think of the semantics as being
what we want to say and the syntax as how to say
it. In these terms the urgent task in programming
languages is to explore the field of semantic pos-
sibilities….When we have discovered the main
outlines and the principal peaks we can go about
describing a suitable neat and satisfactory nota-
tion for them. But first we must try to get a better
understanding of the processes of computing and
their description in programming languages. In
computing we have what I believe to be a new field
of mathematics which is at least as important as
that opened up by the discovery (or should it be
invention) of the calculus.

Apparently, the field of semantic possibilities
must be laid out prior to the design of any actual
language i.e., its syntax. More explicitly, the things
that we may refer to and manipulate, and the pro-
cesses we may call upon to control them, needs to
be settled before any actual syntax is defined. We
shall call this the Semantics First (SF) principle.
According to it, one does not design a language
and then proceed to its semantic definition as a
post-hoc endeavour; semantics must come first.

This leads to the second part of Strachey’s
advice. In the last sentence of the quote he takes
computing to be a new branch of mathematics.
At face value this might be taken to mean that
the activity of programming is somehow a math-
ematical one. This has certainly been suggested

elsewhere (Hoare, 1969) and criticized by several
authors e.g. (Colburn T. R., 2000; Fetzer, 1988;
Colburn T., 2007). But, whatever its merits, this
does not seem to be what Strachey is concerned
with. The early part of the quote suggests that he
is referring to programming languages and their
underlying structures. And his remark seems best
interpreted to mean that (semantically) program-
ming languages are, in some way, mathematical
structures. Indeed, this is in line with other pub-
lications (Strachey C., 1965) where the underly-
ing ontology of a language is taken to consist of
mathematical objects. This particular perspective
found its more exact formulation in denotational
semantics (Stoy, 1977; Milne, 1976), where the
theory of complete lattices supplied the back-
ground mathematical framework. This has since
been expanded to other frameworks including
category theory (Oles, 1982; Crole, 1993).

However, we shall interpret this more broadly
i.e., in a way that is neutral with respect to the host
theory of mathematical structures (e.g. set theory,
category theory, or something else). We shall take
it to mean that programming languages are, via
their provided semantics, mathematical theories
in their own right. We shall refer to this principle
as the Mathematical Thesis (MT).

Exactly what MT and SF amount to, whether
they are true, how they are connected, and what
follows from them, will form the main focus of this
paper. But before we embark on any consideration
of these, we need to clarify what we understand
by the terms mathematical theory and semantics.

MATHEMATICAL THEORIES

The nature of mathematical theories is one of the
central concerns of the philosophy of mathemat-
ics (Shapiro, 2004), and it is not one that we can
sensibly address here. But we do need to say
something; otherwise our claim is left hanging
in the air. Roughly, we shall be concerned with
theories that are axiomatic in the logical sense.

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/programming-languages-mathematical-

theories/62539

Related Content

Predicting Patient Turnover: Lessons From Predicting Customer Churn Using Free-Form Call

Center Notes
Gregory W. Ramseyand Sanjay Bapna (2019). Computational Methods and Algorithms for Medicine and

Optimized Clinical Practice (pp. 108-132).

www.irma-international.org/chapter/predicting-patient-turnover/223786

Navigating Through Choppy Waters of PCI DSS Compliance
Amrita Nanda, Priyal Popatand Deepak Vimalkumar (2018). Cyber Security and Threats: Concepts,

Methodologies, Tools, and Applications (pp. 1093-1124).

www.irma-international.org/chapter/navigating-through-choppy-waters-of-pci-dss-compliance/203549

The BioDynaMo Project: Experience Report
Roman Bauer, Lukas Breitwieser, Alberto Di Meglio, Leonard Johard, Marcus Kaiser, Marco Manca,

Manuel Mazzara, Fons Rademakers, Max Talanovand Alexander Dmitrievich Tchitchigin (2021). Research

Anthology on Recent Trends, Tools, and Implications of Computer Programming (pp. 1785-1791).

www.irma-international.org/chapter/the-biodynamo-project/261101

Bug Handling in Service Sector Software
Anjali Goyaland Neetu Sardana (2021). Research Anthology on Recent Trends, Tools, and Implications of

Computer Programming (pp. 1941-1960).

www.irma-international.org/chapter/bug-handling-in-service-sector-software/261111

Sequential Test Set Compaction in LFSR Reseeding
Artur Jutman, Igor Aleksejevand Jaan Raik (2011). Design and Test Technology for Dependable Systems-

on-Chip (pp. 476-493).

www.irma-international.org/chapter/sequential-test-set-compaction-lfsr/51415

http://www.igi-global.com/chapter/programming-languages-mathematical-theories/62539
http://www.igi-global.com/chapter/programming-languages-mathematical-theories/62539
http://www.irma-international.org/chapter/predicting-patient-turnover/223786
http://www.irma-international.org/chapter/navigating-through-choppy-waters-of-pci-dss-compliance/203549
http://www.irma-international.org/chapter/the-biodynamo-project/261101
http://www.irma-international.org/chapter/bug-handling-in-service-sector-software/261111
http://www.irma-international.org/chapter/sequential-test-set-compaction-lfsr/51415

