
1678

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.4

INTRODUCTION

Computer science, insofar as it is concerned with
the creation of software, shares with mathematics
the distinction of creating its own subject matter
in the guise of formal abstractions. We have ar-
gued (Colburn & Shute, 2007), however, that the
nature of computer science abstraction lies in the
modeling of interaction patterns, while the nature
of mathematical abstraction lies in the modeling
of inference structures. In this regard, computer

science shares as much with empirical science as
it does with mathematics.

But computer science and mathematics are
not alone among disciplines that create their
own subject matter; the engineering disciplines
share this feature as well. For example, although
the process of creating road bridges is certainly
supported by activities involving mathematical
and software modeling, the subject matter of the
civil engineer is primarily the bridges themselves,
and secondarily the abstractions they use to think
about them.

Engineers are also concerned, as are computer
scientists, with interaction patterns among aspects

Timothy Colburn
University of Minnesota, USA

Gary Shute
University of Minnesota, USA

Knowledge, Truth, and Values
in Computer Science

ABSTRACT

Among empirical disciplines, computer science and the engineering fields share the distinction of creat-
ing their own subject matter, raising questions about the kinds of knowledge they engender. The authors
argue that knowledge acquisition in computer science fits models as diverse as those proposed by Piaget
and Lakatos. However, contrary to natural science, the knowledge acquired by computer science is not
knowledge of objective truth, but of values.

DOI: 10.4018/978-1-61350-456-7.ch7.4

1679

Knowledge, Truth, and Values in Computer Science

of the objects they study. The bridge engineer
studies the interaction of forces at work on bridge
superstructure. The automotive engineer studies
the interaction of motions inside a motor. But the
interaction patterns studied by the engineer take
place in a physical environment, while those stud-
ied by the software-oriented computer scientist
take place in a world of computational abstractions.
Near the machine level, these interactions involve
registers, memory locations, and subroutines. At
a slightly higher level, these interactions involve
variables, functions, and pointers. By grouping
these entities into arrays, records, and structures,
the interactions created can be more complex and
can model real world, passive data objects like
phone books, dictionaries, and file cabinets. At a
higher level still, the interactions can involve ob-
jects that actively communicate with one another
and are as various as menus, shopping carts, and
chat rooms.

So computer science shares with mathemat-
ics a concern for formal abstractions, but it parts
with mathematics in being more concerned with
interaction patterns and less concerned with in-
ference structures. And computer science shares
with engineering a concern for studying interac-
tion patterns, but it parts with engineering in that
the interaction patterns studied are not physical.
Left out of these comparisons is the obvious one
suggested by computer science’s very name:
What does computer science share with empirical
science? In this chapter we will investigate this
question, along with the related question: What
is the nature of computer science knowledge?

METAPHOR AND LAW

We were led to these questions, interestingly, when,
in our study of abstraction in computer science, we
found ourselves considering the role of metaphor
in computer science (Colburn & Shute, 2008).
Computer science abounds in physical metaphors,
particularly those centering around flow and mo-

tion. Talk of flow and motion in computer science
is largely metaphorical, since when you look inside
of a running computer the only things moving are
the cooling fan and disk drives (which are probably
on the verge of becoming quaint anachronisms).
Still, although bits of information do not ``flow’’
in the way that continuous fluids do, it helps
immeasurably to ``pretend’’ as though they do,
because it allows network scientists to formulate
precise mathematical conditions on information
throughput and to design programs and devices
that exploit them. The flow metaphor is pervasive
and finds its way into systems programming, as
programmers find and plug ``memory leaks’’
and fastidiously ``flush’’ data buffers. But the
flow metaphor is itself a special case of a more
general metaphor of ``motion’’ that is even more
pervasive in computer science. Descriptions of
the abstract worlds of computer scientists are
replete with references to motion, from program
jumps and exits, to exception throws and catches,
to memory stores and retrievals, to control loops
and branches. This is to be expected, of course,
since the subject matter of computer science is
interaction patterns.

The ubiquitous presence of motion metaphors
in computer science prompted us to consider
whether there is an analogue in computer science to
the concern in natural science with the discovery of
natural laws. I.e., if computer science is concerned
with motion, albeit in a metaphorical sense, are
there laws of computational motion, just as there
are laws of physical motion? We concluded (Col-
burn & Shute, 2010) that there are, but they are
laws of programmers’ own making, and therefore
prescriptive, rather than descriptive in the case of
natural science. These prescriptive laws are the
programming invariants that programmers must
first identify and then enforce in order to bring
about and control computational processes so that
they are predictable and correct for their purposes.
The fact that these laws prescribe computational
reality rather than describe natural reality is in
keeping with computer science’s special status,

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/knowledge-truth-values-computer-science/62537

Related Content

Consistency Checking of Specification in UML
P. G. Sapna, Hrushikesha Mohantyand Arunkumar Balakrishnan (2018). Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and Applications (pp. 993-1010).

www.irma-international.org/chapter/consistency-checking-of-specification-in-uml/192910

Self-Repair Technology for Global Interconnects on SoCs
Daniel Scheitand Heinrich Theodor Vierhaus (2011). Design and Test Technology for Dependable

Systems-on-Chip (pp. 195-215).

www.irma-international.org/chapter/self-repair-technology-global-interconnects/51402

Knowledge Transfer, Knowledge-Based Resources, and Capabilities in E-Commerce Software

Projects
Kung Wang, Hsin Chang Lu, Rich C. Leeand Shu-Yu Yeh (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 1856-1874).

www.irma-international.org/chapter/knowledge-transfer-knowledge-based-resources-and-capabilities-in-e-commerce-

software-projects/261106

A Brief Overview of Software Process Models: Benefits, Limitations, and Application in Practice
Sanjay Misra, Martha Omorodion, Luis Fernández-Sanzand Carmen Pages (2018). Computer Systems and

Software Engineering: Concepts, Methodologies, Tools, and Applications (pp. 1-14).

www.irma-international.org/chapter/a-brief-overview-of-software-process-models/192870

Antipasti: Solving the Software Puzzles
 (2019). Software Engineering for Enterprise System Agility: Emerging Research and Opportunities (pp.

108-130).

www.irma-international.org/chapter/antipasti/207084

http://www.igi-global.com/chapter/knowledge-truth-values-computer-science/62537
http://www.irma-international.org/chapter/consistency-checking-of-specification-in-uml/192910
http://www.irma-international.org/chapter/self-repair-technology-global-interconnects/51402
http://www.irma-international.org/chapter/knowledge-transfer-knowledge-based-resources-and-capabilities-in-e-commerce-software-projects/261106
http://www.irma-international.org/chapter/knowledge-transfer-knowledge-based-resources-and-capabilities-in-e-commerce-software-projects/261106
http://www.irma-international.org/chapter/a-brief-overview-of-software-process-models/192870
http://www.irma-international.org/chapter/antipasti/207084

