
620

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.8

INTRODUCTION

Requirements elicitation is a fundamental part
of the software development process, but often
considered a major problem area, and widely re-
garded as one of the more challenging activities

within the scope of Requirements Engineering
(RE). Heavily dependent on the experience and
expertise of the participating analyst, the elicita-
tion of requirements is often performed badly
in practice, as true experts in this area are few
and far between. The subsequent effects of poor
software requirements elicitation regularly include
costly rework, schedule overruns, poor quality

Chad Coulin
University of Technology Sydney, Australia & LAAS CNRS, France

Didar Zowghi
University of Technology Sydney, Australia

Abd-El-Kader Sahraoui
LAAS CNRS, France

MUSTER:
A Situational Tool for

Requirements Elicitation

ABSTRACT

In this chapter they present a collaborative and situational tool called MUSTER, that has been spe-
cifically designed and developed for requirements elicitation workshops, and which utilizes, extends,
and demonstrates a successful application of intelligent technologies for Computer Aided Software
Engineering and Computer Aided Method Engineering. The primary objective of this tool is to improve
the effectiveness and efficiency of the requirements elicitation process for software systems development,
whilst addressing some of the common issues often encountered in practice through the integration of
intelligent technologies. The tool also offers an example of how a group support system, coupled with
artificial intelligence, can be applied to very practical activities and situations within the software de-
velopment process.

DOI: 10.4018/978-1-61350-456-7.ch3.8

621

MUSTER

systems, stakeholder dissatisfaction, and project
failure (Hickey & Davis, 2002). But despite the
obvious need for an appropriate level of structure
and rigor, this critical, complex, and potentially
expensive activity is more commonly performed
in an ad-hoc manner, without a defined process
or methodology.

Furthermore, many of the current techniques,
approaches, and tools for the elicitation of re-
quirements are either unknown or too complex
for novices, and a general unwillingness to adopt
them by industry, results in a significant gap be-
tween requirements elicitation theory and practice
(Hickey, 2003). Just as important is the current
gap between expert and novice analysts, which
can be attributed to a number of factors, not least
of which is the extensive skill set and range of
experiences that is often required to successfully
conduct this difficult yet vital activity (Hickey &
Davis, 2003). A lack of systematic methods with
situational process guidance, and supporting tools
that can easily be applied to real-world situations,
are additional reasons for the current state of
requirements elicitation in practice.

Subsequently, in this chapter the MUSTER tool
is presented, which embodies and enhances the
situational OUTSET approach for requirements
elicitation (Coulin, Zowghi & Sahraoui, 2006;
Coulin, 2007), and is based on the principles of
Computer Aided Software Engineering, Com-
puter Aided Method Engineering, Group Support
Systems, and Artificial Intelligence. The purpose
of this chapter is therefore to present an intel-
ligent tool for software requirements elicitation
workshops, which is both useable and useful to
practicing analysts. However, the overriding
intention of MUSTER is to improve the overall
effectiveness and efficiency of the requirements
elicitation process specifically for the development
of software systems.

BACKGROUND

Computer Aided Software Engineering (CASE)
tools support one or more techniques within
a software development method (Jarzabek &
Huang, 1998). These tools are attractive to use
during activities such as design, coding, testing,
and validation, mainly because of their potential
to provide substantial gains in quality, productiv-
ity, management, and communication (Hoffer,
George & Valacich, 2002). Furthermore, CASE
tools have been found to be efficient in both re-
search and practice for recording, retrieving, and
manipulating system specifications (Pohl et al.,
1994), partly by automating some aspects of the
system development.

Computer Aided Method Engineering (CAME)
tools support the construction and management of
adaptable methods (Saeki, Tsuchida & Nishiue,
2000). These tools are useful in automating part
of the process of engineering a method, to conduct
one or more of the various system development
activities, by reusing parts of existing methods
(Saeki, 2003). In addition, CAME tools have
shown to be successful in providing the appro-
priate amount of process guidance, based on the
specific needs of software development problems
and projects (Dahanayake, 1998).

A common criticism of CASE tools is that they
do not provide appropriate supporting guidance
for the development process (Pohl et al., 1994),
which can be directly addressed by the integration
of a CAME tool. This would result in a process-
based environment whereby the users can select,
create, and modify method components for spe-
cific system development activities, in addition
to performing the required system development
tasks. The Phedias environment (Wang & Louco-
poulos, 1995), referred to as a “CASE shell”, was
an early attempt at producing a combined CASE
and CAME tool. This tool enabled a method to be
modeled at a Meta-level (i.e. a CAME tool), and
corresponding CASE tools designed, developed,
and integrated within this model and environment

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/muster-situational-tool-requirements-

elicitation/62468

Related Content

Implementation of FFT on General-Purpose Architectures for FPGA
Fabio Garzia, Roberto Airoldiand Jari Nurmi (2012). Computer Engineering: Concepts, Methodologies,

Tools and Applications (pp. 658-676).

www.irma-international.org/chapter/implementation-fft-general-purpose-architectures/62470

Building Defect Prediction Models in Practice
Rudolf Ramler, Johannes Himmelbauerand Thomas Natschläger (2018). Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and Applications (pp. 324-350).

www.irma-international.org/chapter/building-defect-prediction-models-in-practice/192884

Low Power Testing
Zdenek Kotásekand Jaroslav Škarvada (2011). Design and Test Technology for Dependable Systems-on-

Chip (pp. 395-412).

www.irma-international.org/chapter/low-power-testing/51411

Technological Forecasting of Sustainable Products: Analysis of Eco-Innovations
Luan Carlos Santos Silva, Carla Schwengber ten Catenand Silvia Gaia (2020). Disruptive Technology:

Concepts, Methodologies, Tools, and Applications (pp. 1948-1967).

www.irma-international.org/chapter/technological-forecasting-of-sustainable-products/231273

Multicultural Software Development: The Productivity Perspective
Heli Aramo-Immonen, Hannu Jaakkolaand Harri Keto (2012). Computer Engineering: Concepts,

Methodologies, Tools and Applications (pp. 1081-1098).

www.irma-international.org/chapter/multicultural-software-development/62499

http://www.igi-global.com/chapter/muster-situational-tool-requirements-elicitation/62468
http://www.igi-global.com/chapter/muster-situational-tool-requirements-elicitation/62468
http://www.irma-international.org/chapter/implementation-fft-general-purpose-architectures/62470
http://www.irma-international.org/chapter/building-defect-prediction-models-in-practice/192884
http://www.irma-international.org/chapter/low-power-testing/51411
http://www.irma-international.org/chapter/technological-forecasting-of-sustainable-products/231273
http://www.irma-international.org/chapter/multicultural-software-development/62499

