
546

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.4

INTRODUCTION

Data structures and algorithms are important core
issues in computer science education. They are
also complex concepts, thus difficult to grasp by
novice learners. Fortunately, algorithm anima-
tion, visual debugging and algorithm simula-

tion are all suitable methods to aid the learning
process. Much research has been carried out to
identify the great number of issues that we must
take into account while designing and creating
effective visualizations and algorithm animation
for teaching purposes (Baecker, 1998; Brown &
Hershberger, 1992; Fleischer & Kucera, 2001;
Gloor, 1998; Miller, 1993). See, for example, the
techniques developed for using color and sound

Ari Korhonen
Helsinki University of Technology, Finland

Applications of Visual
Algorithm Simulation

ABSTRACT

Understanding data structures and algorithms is an integral part of software engineering and elementary
computer science education. However, people usually have difficulty in understanding abstract concepts
and processes such as procedural encoding of algorithms and data structures. One way to improve their
understanding is to provide visualizations to make the abstract concepts more concrete. In this chapter,
we represent a novel idea to promote the interaction between the user and the algorithm visualization
system called visual algorithm simulation. As a proof of concept, we represent an application framework
called Matrix that encapsulates the idea of visual algorithm simulation. The framework is applied by
the TRAKLA2 learning environment in which algorithm simulation is employed to produce algorithm
simulation exercises. Moreover, we discuss the benefits of such exercises and applications of visual
algorithm simulation in general.

DOI: 10.4018/978-1-61350-456-7.ch3.4

547

Applications of Visual Algorithm Simulation

(Brown & Hershberger, 1992) or hand-made
designs (Fleischer & Kucera, 2001) to enhance
the algorithm animations. We argue, however,
that these are only minor details (albeit important
ones) in the learning process as a whole. In order
to make a real difference here, we should change
the point of view and look at the problem from the
learner’s perspective. How can we make sure the
learner actually gets the picture? It is not what the
learner sees but what he or she does. In addition,
we argue that no matter what kind of visualiza-
tions the teacher has available, the tools cannot
compete in their effectiveness with environments
in which the learner must perform some actions
in order to become convinced of his or her own
understanding.

From the pedagogical point of view, for ex-
ample, a plain tool for viewing the execution of an
algorithm is not good enough (C. D. Hundhausen,
Douglas, & Stasko, 2002; Naps et al., 2003). Even
visual debugging cannot cope with the problem
because it is always bound to the actual source
code. It is still the system that does all the work
and the learner only observes its behavior. At least
we should ensure that a level of progress in learn-
ing has taken place. This requires an environment
where we can give and obtain feedback on the
student’s performance.

Many ideas and systems have been introduced
to enhance the interaction, assignments, mark-up
facilities, and so on, including (Astrachan & Rod-
ger, 1998; Brown & Raisamo, 1997; Grillmeyer,
1999; Hansen, Narayanan, & Schrimpsher, 2000;
Mason & Woit, 1999; Reek, 1989; Stasko, 1997).
On the other hand, the vast masses of students in
basic computer science classes have led us into
the situation in which giving individual guid-
ance for a single student is impossible even with
semi-automated systems. Thus, a kind of fully
automatic instructor would be useful such as
(Baker, Boilen, Goodrich, Tamassia, & Stibel,
1999; Benford, Burke, Foxley, Gutteridge, &
Zin, 1993; Bridgeman, Goodrich, Kobourov, &
Tamassia, 2000; English & Siviter, 2000; Hig-

gins, Symeonidis, & Tsintsifas, 2002; Hyvönen
& Malmi, 1993; Jackson & Usher, 1997; Reek,
1989; Saikkonen, Malmi, & Korhonen, 2001).
However, the topics of data structures and al-
gorithms are often introduced on more abstract
level than those of basic programming courses.
We are more interested in the logic and behavior
of an algorithm than its implementation details.
Therefore, systems that grade programming
exercises are not suitable here. The problem is
to find a suitable application framework for a
system that is capable of interacting with the user
through canonical data structure illustrations in
this logical level and giving feedback on his or
her performance. The aim is to extend the concept
of direct manipulation (Stasko, 1991, 1998) to
support not only manipulation of a visualization
but also the real underlying data structures that
the visualization reflects. It is a kind of combina-
tion of direct manipulation and visual debugging
in which the user can debug the data structures
through graphical user interface. Our approach,
however, allows the user to manipulate the data
structures in two different levels. First, in low level,
the data structures and the data they contain can
be altered, for example, by swapping keys in an
array. Second, in higher level, the framework can
provide ready-made algorithms that the user can
execute during the manipulation process. Thus,
instead of swapping the keys, the user can sort the
whole array with one command. In addition, the
high level algorithms can be simulated in terms
of the low level operations. Thus, the simulation
process can be verified by comparing it to the
execution of an actual algorithm. Quite close to
this idea comes PILOT (Bridgeman et al., 2000) in
which the learner solves problems related to graph
algorithms and receives graphical illustration of
the correctness of the solution, along with a score
and an explanation of the errors made. However,
the current tool covers only graph algorithms, and
especially the minimum spanning tree problem.
Hence, there is no underlying general purpose
application framework that can be extended to

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/applications-visual-algorithm-simulation/62464

Related Content

SaaS Requirements Engineering for Agile Development
Asif Qumer Gilland Deborah Bunker (2013). Agile and Lean Service-Oriented Development: Foundations,

Theory, and Practice (pp. 64-93).

www.irma-international.org/chapter/saas-requirements-engineering-agile-development/70730

Challenges and Solutions for Addressing Software Security in Agile Software Development: A

Literature Review and Rigor and Relevance Assessment
Ronald Jabangwe, Kati Kuusinen, Klaus R. Riisom, Martin S. Hubel, Hasan M. Alradhiand Niels Bonde

Nielsen (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer Programming

(pp. 1875-1888).

www.irma-international.org/chapter/challenges-and-solutions-for-addressing-software-security-in-agile-software-

development/261107

Development of an Efficient and Secure Mobile Communication System with New Future

Directions
Abid Yahya, Farid Ghani, R. Badlishah Ahmad, Mostafijur Rahman, Aini Syuhada, Othman Sidekand M. F.

M. Salleh (2012). Handbook of Research on Computational Science and Engineering: Theory and Practice

(pp. 219-238).

www.irma-international.org/chapter/development-efficient-secure-mobile-communication/60362

The Effect of R&D Cooperation on Organizational Innovation: An Empirical Study of Portuguese

Enterprises
Lurdes Simaoand Mário Franco (2020). Disruptive Technology: Concepts, Methodologies, Tools, and

Applications (pp. 1652-1671).

www.irma-international.org/chapter/the-effect-of-rd-cooperation-on-organizational-innovation/231259

Developing Secure Software Using UML Patterns
Holger Schmidt, Denis Hateburand Maritta Heisel (2018). Computer Systems and Software Engineering:

Concepts, Methodologies, Tools, and Applications (pp. 741-781).

www.irma-international.org/chapter/developing-secure-software-using-uml-patterns/192900

http://www.igi-global.com/chapter/applications-visual-algorithm-simulation/62464
http://www.irma-international.org/chapter/saas-requirements-engineering-agile-development/70730
http://www.irma-international.org/chapter/challenges-and-solutions-for-addressing-software-security-in-agile-software-development/261107
http://www.irma-international.org/chapter/challenges-and-solutions-for-addressing-software-security-in-agile-software-development/261107
http://www.irma-international.org/chapter/development-efficient-secure-mobile-communication/60362
http://www.irma-international.org/chapter/the-effect-of-rd-cooperation-on-organizational-innovation/231259
http://www.irma-international.org/chapter/developing-secure-software-using-uml-patterns/192900

