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INTRODUCTION

As we live in contemporary world, we leave thou-
sands of digital footprints behind us through usage 
of mobile phones, credit cards, electronic mail, 
browsing in social networks etc. Each footprint 
shows our real actions that we take in given time 
and place. The analysis of thousands of such foot-

prints on large groups of people allow us to analyze 
human behavior on an unimaginable before scale 
in scientific studies concerning psychology and 
sociology (Lazer et al. 2009). The results of those 
analysis will have a significant influence on many 
disciplines such as medical prophylaxis, political 
elections or contemporary marketing in personal-
ized customer relationship management. In this 
context it is interesting to look at the summary of 
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ABSTRACT

Contemporary companies try to build customer relationship management systems based on the customer 
social relations and behavioral patterns. This is in correspondence with the current trend in marketing that 
is to move from broadcast marketing operation to a one-to-one marketing. The key issue in this activity is 
predicting to which products or services a particular customer was likely to respond to. In order to build 
customer relationship management systems, companies have to learn to understand their customer in 
the broader social context. The key hypothesis in this approach is that the predictors of behavior in the 
future are customers behavior patterns in the past. This is a form of human behavioral modeling. The 
individual customer behavior patterns can be used to build an analytical customer profile. This will be 
described in section “Introduction” and “Customer profiling”. Based on this profile a company might 
target a specific customer with a personalized message. In section “Critical examples” the authors will 
focus in particular on the importance of the customer social relations, that reflects referrals influence 
on the marketing response. In the end in section “Market of analytical profiles” they will discuss the 
potential business models related to market exchange of analytical profiles.
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historical development of customer management 
by Kumar (2008). It begins with direct relations 
with individual customers, then entire-market 
customers, segmented customers and finally the 
return to the initial idea of personalized service 
usage of interactive marketing (Deighton et al. 
1996). According to Kumar, interactive market-
ing can be described as follows (Kumar 2008):

1.  The range of decisions: identification of 
interested customers and assuring on-going 
relations or relations at proper time.

2.  The range of analysis: elaborating the com-
plete characteristics of the customer.

3.  Value building factor: personalization and 
adapting proper service at a proper time.

The usage of customer behavior in marketing 
has a relatively long history. Analytical customer 
relationship management systems have been used 
in telecommunications and banking sector since 
the 90s of the previous century (Shankar, Winer 
2006). In this perspective, new type of data about 
diversified customer behaviors introduces new 

opportunities in contemporary marketing. This 
new potential, related to the development of 
Business Intelligence systems (Surma 2011), has 
contributed to the development of personalized 
marketing concept based on profound analysis of 
history of contacts with customer1.

CUSTOMER PROFILING

From Segmentation to 
Personalization

In order to understand properly new analytical 
opportunities in marketing, it is crucial to dif-
ferentiate correctly the classic approach based 
on customer segmentation (see Figure 1) in 
comparison to personalized approach related 
to interactive marketing (see Figure 2). In case 
of segmentation, the division of customers is 
done usually on the basis of social-demographic 
characteristics (e.g., sex, age, education, place of 
residence) and the analysis of the purchase his-
tory, using the RFM2 analysis. In this approach, 

Figure 1. Classical marketing based on the customer segmentation: „I have a product, give me a client”

Figure 2. Interactive marketing based on the personalization: „I have a client, give me a product”
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