IDEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB9958

Chapter XII

Understanding Decision-Making in Data Warehousing and Related Decision Support Systems:

An Explanatory Study of a Customer Relationship Management Application¹

John D. Wells, Washington State University, USA

Traci J. Hess, Washington State University, USA

ABSTRACT

Many businesses have made or are making significant investments in data warehouses that reportedly support a myriad of decision support systems (DSS). Due to the newness of data warehousing and related DSS (DW-DSS), the nature of the decision support provided to DW-DSS users and the related impact on decision performance have not been investigated in an applied setting. An explanatory case study was undertaken at a financial services organization that implemented a particular type of DW-DSS, a Customer Relationship Management (CRM) system. The DSS-

This chapter appears in the book, Business Intelligence in the Digital Economy, edited by Mahesh S. Raisinghani. Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

decision performance model has provided some theoretical guidance for this exploration. The case study results show that the decision-making support provided by these systems is limited and that an extended version of the DSS-decision performance model may better describe the factors that influence individual decision-making performance.

INTRODUCTION

The significant investments in data warehousing that began in the 1990s and continue today were motivated by the belief that more information would enable business users to make better decisions resulting in improved returns. Data warehousing-related decision support systems (DW-DSS) were built to assist business users in analyzing the vast amounts of data that originate from heterogeneous data sources. These business intelligence systems utilize tools such as OLAP, data mining, and query management, enabling businesses to pursue organizational strategies such as customer relationship management (CRM), business process management, and supply-chain management. While businesses have been eager to invest in DW-DSS applications, many appear to have overlooked the relationship between the efficient use of these investments and a user-oriented approach to developing and maintaining these systems (Gardner, 1998; Glassey 1998). Some companies investing in these initiatives have already noted that it is difficult to translate the information provided by these systems into positive business results (Hoffman, 2001). Obtaining the necessary information is an important hurdle, but how the information is presented and used for decision-making purposes is equally important.

The purpose of the research project reported in this chapter is to investigate the decision-making support provided in the complex, heterogeneous decision environment of DW-DSS and to focus on the decision-makers' perceptions of this support. An explanatory case study of a Fortune 500 company that is utilizing a CRM application, an instance of a DW-DSS, was conducted to understand these issues. While many organizations claim to have developed systems that support this customer-centric strategy, there has been little research on the functionality and decision support provided by these systems. An investigation of this decision-making support should extend the body of research on decision-making support systems in general, as well as the multi-billion dollar CRM sector. The goal of this case study is to investigate how DW-DSS provide decision support to individual decision makers by (1)

21 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/understanding-decision-making-datawarehousing/6073

Related Content

State-of-the-Art Review on the Models, Techniques, and Datasets to Diagnose COVID-19 Disease

Vetrithangam D., Naresh Kumar Pegada, Himabindu R., Arunadevi B.and Ramesh Kumar A. (2023). *Handbook of Research on Al and Knowledge Engineering for Real-Time Business Intelligence (pp. 208-233).*

www.irma-international.org/chapter/state-of-the-art-review-on-the-models-techniques-and-datasets-to-diagnose-covid-19-disease/321496

Integrating Ontologies and Bayesian Networks in Big Data Analysis

Hadrian Peterand Charles Greenidge (2014). *Encyclopedia of Business Analytics and Optimization (pp. 1254-1261).*

www.irma-international.org/chapter/integrating-ontologies-and-bayesian-networks-in-big-data-analysis/107323

A Timeline Optimization Approach of Green Requirement Engineering Framework for Efficient Categorized Natural Language Documents in Non-Functional Requirements

K. Mahalakshmi, Udayakumar Allimuthu, L Jayakumarand Ankur Dumka (2021). *International Journal of Business Analytics (pp. 21-37).*

www.irma-international.org/article/a-timeline-optimization-approach-of-green-requirement-engineering-framework-for-efficient-categorized-natural-language-documents-in-non-functional-requirements/269485

Sentiment Analysis in Supply Chain Management

Lincoln C. Wood, Torsten Reinersand Hari S. Srivastava (2014). *Encyclopedia of Business Analytics and Optimization (pp. 2147-2158).*

www.irma-international.org/chapter/sentiment-analysis-in-supply-chain-management/107401

Supervised Regression Clustering: A Case Study for Fashion Products

Ali Fallah Tehraniand Diane Ahrens (2016). *International Journal of Business Analytics (pp. 21-40).*

www.irma-international.org/article/supervised-regression-clustering/165009