
410

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

Petra Brosch
Vienna University of Technology, Austria

Philip Langer
Johannes Kepler University Linz, Austria

Martina Seidl
Johannes Kepler University Linz, Austria

Konrad Wieland
Vienna University of Technology, Austria

Manuel Wimmer
Vienna University of Technology, Austria

Gerti Kappel
Vienna University of Technology, Austria

The Past, Present, and Future
of Model Versioning

ABSTRACT

The evolution of software models induces a plethora of challenging research issues. Only when these
problems are solved, the techniques of model-driven engineering (MDE) are able to fully exploit their
potential in practice. Otherwise the advantages of MDE are relativized by time-consuming and cumber-
some management tasks which are already well supported for traditional development based on textual
code. One of these challenges is model versioning.

Version Control Systems (VCS) are an essential part of the software development infrastructure which
(i) store the history of evolution of software artifacts, (ii) support multiple developers working in par-
allel, and (iii) manage different development branches. For all of these tasks, changes performed on
the artifacts under version control have to be tracked. For the second and third task it is additionally
necessary to detect conflicts between concurrently evolved versions of one artifact and to resolve such
conflicts in order to obtain a consolidated version.

DOI: 10.4018/978-1-61350-438-3.ch015

411

The Past, Present, and Future of Model Versioning

INTRODUCTION

During the software development lifecycle, the
various software artifacts under construction are
subject to successive changes. Consequently, tool
support for managing the evolution of these arti-
facts is indispensable (Estublier et al., 2005; and
Mens, 2008). To this end, the discipline of Software
Configuration Management (SCM) provides tools
and techniques for making evolution manageable
(Tichy, 1988). Amongst others, these tools include
Version Control Systems (VCS) whose origins
may be dated back to the early 70s. Since then,
the discipline of versioning is an active research
topic generating a variety of different concepts,
formalisms, and technologies.

The aims of versioning approaches are three-
fold. First, versioning systems maintain a histori-
cal archive of the different versions an artifact
adopts during its development. With this archive,
it is possible to undo harmful modifications by
restoring previous development states. Second,
versioning systems support handling different
development branches, e.g., for building different
software variants. Third, versioning approaches
manage the parallel evolution of software artifacts
performed by a (distributed) team of developers.
In this book chapter we focus on the latter aim.

In general, two different versioning strate-
gies exist to cope with the concurrent evolution
of one artifact. When pessimistic versioning is
applied, an artifact is locked while it is changed
by one developer. Since other developers cannot
perform any changes while the artifact is locked,
conflicts are completely avoided with this strategy.
However, the drawbacks are possible idle times

for developers waiting for the release of a locked
artifact. To avoid such idle times, optimistic ver-
sioning allows the developers to change the same
artifact in parallel and independently of each other.
The typical workflow of optimistic versioning is
depicted in Figure 1. Two users of the optimistic
versioning system, Harry and Sally, check out the
same artifact at time t0. Both modify the checked
out Version 0 independently of each other. After
Sally has finished, she checks in her modified
version (Version 1) at t1. When Harry also tries
to check in his modified version, he first has to
merge his version (Version 2) with the latest ver-
sion in the repository (Version 1). Merging, often
a time-consuming and tedious task, is the price
to pay, when concurrent modifications by several
users are allowed. In general, the merge process
may be divided into four steps: (i) identifying the
differences between two concurrently modified
versions, (ii) detecting conflicts between these
two modifications, (iii) resolving these conflicts
either automatically or manually, and finally (iv)
creating a new consolidated version which, in
the best case, combines all intentions behind all
concurrently performed modifications.

From a technical point of view, a wealth of
works have been published which contribute in
solving various versioning challenges (cf. Con-
radi & Westfechtel, 1998 for a survey), but how
versioning really works in practice when huge
software applications are developed is hardly dis-
cussed. To fill this gap, in 2010 we have conducted
an online survey on best practices in versioning,
which has been answered by approximately 100
software engineers, software architects, and IT
managers. We wanted to learn about their habits

Compared to code versioning, which works well in practice, model versioning is still in its infancy as
the established approaches for code versioning may be hardly reused. However, several dedicated ap-
proaches for model versioning have been proposed. In this chapter, we review the active research field of
model versioning, establish a common terminology, introduce the various techniques and technologies
applied in state-of-the-art versioning systems, and conclude with open issues and challenges which have
to be overcome for putting model versioning into practice.

32 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/past-present-future-model-versioning/60729

Related Content

Automated Knowledge Extraction of Liver Cysts From CT Images Using Modified Whale

Optimization and Fuzzy C Means Clustering Algorithm
Ramanjot Kaurand Baljit Singh Khehra (2022). International Journal of Information System Modeling and

Design (pp. 1-32).

www.irma-international.org/article/automated-knowledge-extraction-of-liver-cysts-from-ct-images-using-modified-whale-

optimization-and-fuzzy-c-means-clustering-algorithm/306644

The Influence of the Application of Agile Practices in Software Quality Based on ISO/IEC 25010

Standard
Gloria Arcos-Medinaand David Mauricio (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 1416-1443).

www.irma-international.org/chapter/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-

isoiec-25010-standard/294525

Service-Oriented Cost Allocation for Business Intelligence and Analytics: Helping Service

Consumers to Increase Business Value
Raphael Grytzand Artus Krohn-Grimberghe (2017). International Journal of Systems and Service-Oriented

Engineering (pp. 40-57).

www.irma-international.org/article/service-oriented-cost-allocation-for-business-intelligence-and-analytics/190412

Union Filesystem Source Directory Protect Architecture
Sung Hwa Han, Min Hye Jwa, Sang Bin Jeongand Gwangyong Gim (2022). International Journal of

Software Innovation (pp. 1-13).

www.irma-international.org/article/union-filesystem-source-directory-protect-architecture/289596

Control System Development
 (2017). Model-Based Design for Effective Control System Development (pp. 109-176).

www.irma-international.org/chapter/control-system-development/179500

http://www.igi-global.com/chapter/past-present-future-model-versioning/60729
http://www.irma-international.org/article/automated-knowledge-extraction-of-liver-cysts-from-ct-images-using-modified-whale-optimization-and-fuzzy-c-means-clustering-algorithm/306644
http://www.irma-international.org/article/automated-knowledge-extraction-of-liver-cysts-from-ct-images-using-modified-whale-optimization-and-fuzzy-c-means-clustering-algorithm/306644
http://www.irma-international.org/chapter/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-25010-standard/294525
http://www.irma-international.org/chapter/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-25010-standard/294525
http://www.irma-international.org/article/service-oriented-cost-allocation-for-business-intelligence-and-analytics/190412
http://www.irma-international.org/article/union-filesystem-source-directory-protect-architecture/289596
http://www.irma-international.org/chapter/control-system-development/179500

