
200

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

Ricardo Pérez-Castillo
University of Castilla-La Mancha, Spain

Ignacio García Rodríguez de Guzmán
University of Castilla-La Mancha, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

Model-Driven Reengineering

ABSTRACT

Legacy information systems entail a risk for companies because, on the one hand, they cannot be thrown
away since valuable business knowledge becomes embedded in them over time, and on the other hand,
they cannot be easily maintained at a moderate cost. Over the last two decades, reengineering has been
the solution to these problems, since it supports the evolutionary maintenance of legacy information
systems whilst simultaneously preserving the knowledge embedded within them. Unfortunately, traditional
reengineering is facing new challenges concerning its formalization and automation as a consequence
of legacy information systems being increasingly larger and more complex. A new software engineering
approach known as Model-Driven Reengineering has consequently emerged to deal with these limitations.
Model-Driven Reengineering does not replace traditional reengineering, but incorporates the model-
driven development principles; i.e., this approach treats all software artifacts as models and establishes
transformations between these models at different degrees of abstraction. The objective of this chapter is
to provide an overview of the emerging concepts and standards related to Model-Driven Reengineering.
This chapter also discusses how Model-Driven Reengineering deals with typical challenges that emerge
when LISs are evolved, in order to mitigate the negative effects of the software erosion phenomenon,
preserve the embedded business knowledge, and reduce maintenance costs.

DOI: 10.4018/978-1-61350-438-3.ch008

201

Model-Driven Reengineering

INTRODUCTION

Although software is an intangible object, the qual-
ity of software diminishes over time in a similar
way to that of material objects. Lehman’s first law
states that an information system must continually
evolve or it will become progressively less suit-
able in a real-world environment (Lehman et al.,
1998). Companies currently have an enormous
amount of large legacy systems which undergo
the phenomenon of software erosion and software
ageing. This means that existing information
systems become progressively less maintainable
(Polo et al., 2003). The negative effects of soft-
ware erosion can be dead code, clone programs,
missing capacities, inconsistent data and control
data (coupling), among others (Visaggio, 2001).

On the one hand, software maintenance is part
of the software erosion problem, since software
erosion is due to maintenance itself and to the
uncontrolled evolution of the system over time.
On the other hand, software maintenance is also
part of the solution to software erosion. The suc-
cessive changes in information systems transform
them into Legacy Information Systems (LIS),
and a new and improved system must therefore
replace the previous one when the maintainability
levels diminish below acceptable limits (Mens,
2008). Nevertheless, the wide replacement of
these systems from scratch is a key challenge
since it makes a great impact on the technologi-
cal, human and economic aspects of companies
(Sneed, 2005). Firstly, the entire replacement of
LISs affects technological and human aspects,
since it usually involves retraining all the users in
order for them to understand the new system and/
or the new technology. Secondly, the new system
may have a lack of specific functionalities that
are missing as a result of technological changes.
Thirdly, the economic aspect of companies is also
affected, since the replacement of an entire LIS, by
implementing a new system from scratch, implies
a low Return of Investment (ROI) with regard
to the old system. In addition, the development

or purchase of the new system might exceed a
company’s budget.

In order to understand why a complete replace-
ment from scratch in not an appropriate solution
to the software erosion phenomenon, the follow-
ing example, adapted from (Pérez-Castillo et al.,
2011), is provided: Let us imagine a transmission
belt in a car engine. This piece deteriorates progres-
sively over time. When this piece is damaged, or
its quality decreases considerably, it may become a
threat to the overall performance of the motor. This
transmission belt must consequently be replaced
immediately, and the engine will therefore oper-
ate normally after the replacement. The solution
in this case is easy, but an information system
used in a company is more complicated. When
an information system ages, it cannot simply be
replaced by another new system for two impor-
tant reasons: (i) a transmission belt costs a few
dollars while an enterprise information system
costs thousands of dollars, but in addition, (ii)
while the environment of the belt (i.e. the motor)
does not change, a considerable amount of busi-
ness knowledge becomes embedded in the aged
system over time in order to address the changes
in the company’s environment. This embedded
knowledge is lost if the aged information system
is replaced in its entirety, since this knowledge
is not present anywhere else. A company with a
new system may not therefore work normally,
unlike the car engine.

An alternative to an entire replacement from
scratch is another solution to software erosion that
provides better results: software evolution. Soft-
ware evolution is a kind of software maintenance
which is also termed as evolutionary maintenance.
In general, the maintenance process can perform
four categories of modifications in the existing
software (ISO/IEC, 2006):

• Corrective maintenance, which modifies
a software product after delivery in order
to correct any problems discovered.

28 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-reengineering/60722

Related Content

High-Performance Modelling in Geodynamics
Lena Noackand Nicola Tosi (2013). Integrated Information and Computing Systems for Natural, Spatial,

and Social Sciences (pp. 324-352).

www.irma-international.org/chapter/high-performance-modelling-geodynamics/70616

Fatigue Monitoring and Recognition During Basketball Sports via Physiological Signal Analysis
Zhenhua Xie (2022). International Journal of Information System Modeling and Design (pp. 1-11).

www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-

analysis/313581

How to Create a Credible Software Engineering Bachelor's Program: Navigating the Waters of

Program Development
Stephen Frezza (2009). Software Engineering: Effective Teaching and Learning Approaches and Practices

(pp. 298-325).

www.irma-international.org/chapter/create-credible-software-engineering-bachelor/29605

New Tools in Hardware and Software Design Applied for Remote Photovoltaic Laboratory
Petru A. Cotfas, Daniel T. Cotfas, Doru Ursutiu, Cornel Samoilaand Dragos Iordache (2014). Software

Design and Development: Concepts, Methodologies, Tools, and Applications (pp. 1073-1092).

www.irma-international.org/chapter/new-tools-hardware-software-design/77747

Software Defects Prediction Model with Self Improved Optimization
Shantappa G. Gollagi, Jeneetha Jebanazer Jand Sridevi Sakhamuri (2022). International Journal of

Software Innovation (pp. 1-21).

www.irma-international.org/article/software-defects-prediction-model-with-self-improved-optimization/309735

http://www.igi-global.com/chapter/model-driven-reengineering/60722
http://www.irma-international.org/chapter/high-performance-modelling-geodynamics/70616
http://www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-analysis/313581
http://www.irma-international.org/article/fatigue-monitoring-and-recognition-during-basketball-sports-via-physiological-signal-analysis/313581
http://www.irma-international.org/chapter/create-credible-software-engineering-bachelor/29605
http://www.irma-international.org/chapter/new-tools-hardware-software-design/77747
http://www.irma-international.org/article/software-defects-prediction-model-with-self-improved-optimization/309735

