
92

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

Yu Sun
University of Alabama at Birmingham, USA

Jeff Gray
University of Alabama, USA

Philip Langer
Johannes Kepler University, Austria

Gerti Kappel
Vienna University of Technology, Austria

Manuel Wimmer
Vienna University of Technology, Austria

Jules White
Virginia Tech, USA

A WYSIWYG Approach to
Support Layout Configuration

in Model Evolution

ABSTRACT

Model evolution has become an essential activity in software development with the ongoing adoption
of domain-specific modeling, which is commonly supported and automated by using model transforma-
tion techniques. Although a number of model transformation languages and tools have been developed
to support model evolution activities, the layout of visual models in the evolution process is not often
considered. In many cases, after a transformation is performed, the layout of the resulting model must be
manually rearranged, which can be time consuming and error-prone. The automatic layout arrangement
features provided by some modeling tools usually do not take a user’s preferences or the semantics of the
model into consideration, and therefore could potentially alter the desired layout in an undesired manner.
This chapter describes a new approach to enable users to specify the model layout as a demonstrated
model transformation. We applied the Model Transformation By Demonstration (MTBD) approach and
extended it to let users specify the layout information using the concept of “What You See Is What You
Get” (WYSIWYG), so that the complex layout specification can be simplified.

DOI: 10.4018/978-1-61350-438-3.ch004

93

A WYSIWYG Approach to Support Layout Configuration in Model Evolution

INTRODUCTION

With the ongoing adoption of Domain-Specific
Modeling (DSM) (Gray et al., 2007), models are
emerging as first-class entities in many domains
and play an increasingly significant role in every
phase of software development (i.e., from system
requirements analysis and design, to software
implementation and maintenance). In the DSM
context, whenever a software system needs to
evolve, the models used to represent the system
should evolve accordingly. For instance, system
design models often need to be changed to adapt
to new system requirements (Greenfield & Short,
2004). As an additional example, it is sometimes
necessary to apply model refactoring (France et
al., 2003) to optimize the internal structure of
the implementation models (i.e., models used
to generate implementation code through code
generators). Furthermore, models used to control
the deployment of a software system are occa-
sionally scaled up for the purpose of improving
performance (Sun et al., 2009a).

Although manual model evolution is often
tedious and error-prone, automating complex
model evolution tasks using model transforma-
tion technologies has become a popular practice
(Gray et al., 2006). A number of executable model
transformation languages (e.g., QVT (http://www.
omg.org/cgi-bin/doc?ptc/2005-11-01, 2010),
ATL (Jouault et al., 2008)) have been developed
to enable users to specify model transformation
rules, which take an input model and evolve it to
produce an output model automatically.

Open Problems

Although the implementation of model evolution
concerning the abstract syntax has been well-
supported, the layout of models is rarely consid-
ered in the traditional model evolution process.
Most evolution efforts focus only on the semantic
aspects of the evolution (e.g., adding or remov-
ing necessary model elements and connections,

modifying attributes of model elements), and often
ignore model layout configuration concerns during
the evolution (e.g., positions of model elements,
font, color and size used in labels). For instance,
executing a set of model transformation rules to add
model elements and connections will sometimes
lead to placing all the newly created elements in
a random location in the model editor.

Ignoring the desired layout after model evo-
lution has a strong potential to undermine the
readability and understandability of the evolved
model, and may even unexpectedly affect the im-
plicit semantics under certain circumstances. For
example, users may accidentally misunderstand
the system because of a disordered layout (e.g., a
sequence of actions to be executed is represented
by a set of nodes with arrows indicating the se-
quence, but a disordered arrangement of the nodes
may lead to a challenge in identifying the correct
execution order). Furthermore, the positions of
model elements and connections may correspond
to special coordinates in the real world, such that
an unoptimized layout could lead to unexpected
problems for the actual system (e.g., the configu-
ration of the actual hardware devices and cables
might be based on the positions of model ele-
ments and connections representing them, or the
color of the elements might represent the running
status of the actual devices). It may be possible
to incorporate the layout information related
with the implicit semantics into the metamodel
as part of the abstract syntax, but a change to the
metamodel may trigger further model migration
problems (Sprinkle, 2003). Although it is very
direct to manually adjust the layout, it becomes
a tedious, timing-consuming task when a larger
number of model elements are involved in the
model evolution process. Therefore, while the
semantic concerns of model evolution have been
implemented and automated, it is indispensible to
realize the automatic configuration of the layout
as part of the model evolution process.

The most commonly used approach to auto-
matically arrange the layout of models is to apply

27 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/wysiwyg-approach-support-layout-

configuration/60718

Related Content

The Role of Standards in the Development of New Informational Infrastructure
Vladislav V. Fominand Marja Matinmikko (2014). Systems and Software Development, Modeling, and

Analysis: New Perspectives and Methodologies (pp. 149-160).

www.irma-international.org/chapter/the-role-of-standards-in-the-development-of-new-informational-infrastructure/108814

Parameterized Transformation Schema for a Non-Functional Properties Model in the Context of

MDE
Gustavo Millán García, Rubén González Crespoand Oscar Sanjuán Martínez (2014). Advances and

Applications in Model-Driven Engineering (pp. 268-288).

www.irma-international.org/chapter/parameterized-transformation-schema-non-functional/78619

Model-Driven Software Migration: Process Model, Tool Support, and Application
Andreas Fuhr, Andreas Winter, Uwe Erdmenger, Tassilo Horn, Uwe Kaiser, Volker Riedigerand Werner

Teppe (2013). Migrating Legacy Applications: Challenges in Service Oriented Architecture and Cloud

Computing Environments (pp. 153-184).

www.irma-international.org/chapter/model-driven-software-migration/72216

Functional Testing Using OCL Predicates to Improve Software Quality
A. Jalila, D. Jeya Malaand M. Eswaran (2015). International Journal of Systems and Service-Oriented

Engineering (pp. 56-72).

www.irma-international.org/article/functional-testing-using-ocl-predicates-to-improve-software-quality/126638

Detection of Sexually Harassing Tweets in Hindi Using Deep Learning Methods
Tarun Jain, Rishabh Jain, Shivaji Ray Chaudhuri, Shrey Upadhyay, Arjun Singh, Vivek K. Vermaand Aditya

Sinha (2022). International Journal of Software Innovation (pp. 1-15).

www.irma-international.org/article/detection-of-sexually-harassing-tweets-in-hindi-using-deep-learning-methods/309110

http://www.igi-global.com/chapter/wysiwyg-approach-support-layout-configuration/60718
http://www.igi-global.com/chapter/wysiwyg-approach-support-layout-configuration/60718
http://www.irma-international.org/chapter/the-role-of-standards-in-the-development-of-new-informational-infrastructure/108814
http://www.irma-international.org/chapter/parameterized-transformation-schema-non-functional/78619
http://www.irma-international.org/chapter/model-driven-software-migration/72216
http://www.irma-international.org/article/functional-testing-using-ocl-predicates-to-improve-software-quality/126638
http://www.irma-international.org/article/detection-of-sexually-harassing-tweets-in-hindi-using-deep-learning-methods/309110

