
177

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-61350-116-0.ch008

INTRODUCTION

Many scientific software projects intended for a
broad scientific community succeed in that they
make a significant contribution to the science.
Many, however, fail. Some of these fail for sci-

entific reasons (the underlying science was im-
perfectly understood), or because of coding
problems (for example, an inappropriate choice
of implementation language). Another less obvi-
ous cause of failure is the differences in the be-
haviour, knowledge, values, assumptions and
goals between three different groups of people
involved in such projects. These three groups are

Judith Segal
The Open University, UK

Chris Morris
STFC Daresbury Laboratory, UK

Developing Software for a
Scientific Community:

Some Challenges and Solutions

ABSTRACT

There are significant challenges in developing scientific software for a broad community. In this chapter,
we discuss how these challenges are somewhat different both from those encountered when a scientist
end-user developer develops software to address a very specific scientific problem of his/her own, and
from those encountered in many commercial developments. However, many developers of scientific com-
munity software are steeped in the culture of either scientific end-user or commercial development. As
we shall discuss herein, neither background provides sufficient experience so as to meet the challenges
of developing software for a scientific community. We make various proposals as to which development
approaches, methods, techniques and tools might be useful in this context, and just as importantly,
which might not.

178

Developing Software for a Scientific Community

scientists; scientific end-user developers, that is
to say, scientists who are developing software for
their own use or for that of their close colleagues;
and professional software developers, to whom
the science is just another user domain.

In writing this chapter, we draw heavily on
the field studies conducted by the first author, an
academic, in a variety of scientific settings, and
on the many years’ experience developing scien-
tific software of the second author, a professional
software developer.

Our aims in writing this chapter are:

•	 To articulate some specific challenges fac-
ing scientific software developers. These
challenges have their origins either in the
culture of scientific end-user development
or in the nature of science itself.

•	 To suggest ways in which these challenges
might be addressed.

In what follows, we shall firstly articulate the
behaviour, knowledge, values, assumptions and
goals that characterize much scientific end-user
development and then discuss the challenges
which these characteristics pose when the context
of the development is broadened. We then go on to
discuss which development approaches, methods/
techniques and tools might be useful in scientific
software development, and, equally importantly,
identify some which will not. Finally, we discuss
how this identification of effective ways of sup-
porting scientific software development can be
progressed.

Throughout this paper, we stress the importance
of context. A couple of examples give a flavour
of this importance:

•	 A particular tool which is useful in a com-
mercial development context might not be
so useful in a scientific;

•	 Assumptions which are perfectly justified
in a setting where a scientist is developing
software for himself/herself to explore a
particular scientific question might not be
justified in other development settings.

This emphasis on the importance of context
means that it is difficult to set any hard-and-fast
rules along the lines of ‘scientific software devel-
opers should apply this testing technique to their
software’. We hope rather that this chapter might
provide the means by which you might recognise
the challenges in your particular development
context, and suggest some ways by which you
might address such challenges.

There is a caveat which we should stress here.
One chapter cannot possibly say all there is to say
about the challenges facing developers of software
for a scientific community. We focus here on
the challenges posed by the culture of scientific
end-user development, as revealed by our field
studies. These studies did not include FLOSS
developments (free libre open source software),
see the later section on future research directions.
We also took little cognisance of CSCW (computer
supported cooperative work) literature. We com-
ment further on this literature in the additional
reading section.

Table 1. Two snapshots from the first author’s field studies:

Scientist: Anyone can develop software. Why should we listen to
the advice of a professional software developer?

(Professional software developer is deeply offended)

Professional software developer: We need to start off with a clear
document of your requirements, and then we’ll draw up a require-
ments specification document which you can check.

Scientist: But that simply isn’t how we work.

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/developing-software-scientific-community/60360

Related Content

Blind User Interfacing: Requirements, Models and a Framework
Fernando Alonso, José Fuertes, Ángel Gonzálezand Loïc Martínez (2012). Computer Engineering:

Concepts, Methodologies, Tools and Applications (pp. 149-167).

www.irma-international.org/chapter/blind-user-interfacing/62440

Modeling Security Goals and Software Vulnerabilities
David Byersand Nahid Shahmehri (2012). Dependability and Computer Engineering: Concepts for

Software-Intensive Systems (pp. 171-198).

www.irma-international.org/chapter/modeling-security-goals-software-vulnerabilities/55329

A Relative Performance of Dissimilarity Measures for Matching Relational Web Access Patterns

Between User Sessions
Dilip Singh Sisodia (2018). Handbook of Research on Pattern Engineering System Development for Big

Data Analytics (pp. 153-176).

www.irma-international.org/chapter/a-relative-performance-of-dissimilarity-measures-for-matching-relational-web-access-

patterns-between-user-sessions/202839

Application of Triplet Notation and Dynamic Programming to Single-Line, Multi-Product Dairy

Production Scheduling
Virginia M. Mioriand Brian Segulin (2012). Computer Engineering: Concepts, Methodologies, Tools and

Applications (pp. 816-827).

www.irma-international.org/chapter/application-triplet-notation-dynamic-programming/62481

Kansei Database and AR*-Tree for Speeding up the Retrieval
Yaokai Feng (2011). Kansei Engineering and Soft Computing: Theory and Practice (pp. 111-125).

www.irma-international.org/chapter/kansei-database-tree-speeding-retrieval/46394

http://www.igi-global.com/chapter/developing-software-scientific-community/60360
http://www.irma-international.org/chapter/blind-user-interfacing/62440
http://www.irma-international.org/chapter/modeling-security-goals-software-vulnerabilities/55329
http://www.irma-international.org/chapter/a-relative-performance-of-dissimilarity-measures-for-matching-relational-web-access-patterns-between-user-sessions/202839
http://www.irma-international.org/chapter/a-relative-performance-of-dissimilarity-measures-for-matching-relational-web-access-patterns-between-user-sessions/202839
http://www.irma-international.org/chapter/application-triplet-notation-dynamic-programming/62481
http://www.irma-international.org/chapter/kansei-database-tree-speeding-retrieval/46394

