
150

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

INTRODUCTION

Mistakes find their way into all nontrivial pieces
of software. This is supported by both our experi-
ences and by published research. For example, Les
Hatton (1997) conducted a series of experiments
in which he found that some scientific programs

thought to be “fully tested” (p. 30) harboured
serious code faults.

For scientific software to be trusted, the
developers of scientific software must make a
reasonable effort to detect and correct the faults
in their code. This reality is strongly expressed by
Donoho, Maleki, Shahram, Ur Rahman, & Stodden
(2009) in an article on reproducible computational
research in which they write:

Diane Kelly
Royal Military College, Canada

Daniel Hook
Engineering Seismology Group, Canada

Rebecca Sanders
EA Pogo, Canada

A Framework for Testing Code
in Computational Applications

ABSTRACT

The aim of this chapter is to provide guidance on the challenges and approaches to testing computational
applications. Testing in our case is focused on code testing for accuracy as opposed to validating the
science models or testing user interfaces. A testing framework is used to present the different challenges.
Discussions cover topics such as test oracles and the tolerance problem, testing to address specific goals
rather than testing as a process, areas of risk inherent in developing and using computational software,
a testing mindset, and the use of technical reviews. Three observational studies are included to illustrate
different techniques, problems, and approaches. There is no prescribed way of testing computational
code. Instead, an awareness of risks and challenges inherent in computational software can provide the
necessary guidance.

DOI: 10.4018/978-1-61350-116-0.ch007

151

A Framework for Testing Code in Computational Applications

Many scientists accept computation (for example,
large-scale simulation) as the third branch [of
science—alongside deductive and empirical
branches]...However, it does not yet deserve
elevation to third-branch status because current
computational science practice doesn’t generate
routinely verifiable knowledge. Before scientific
computation can be accorded the status it aspires
to, it must be practiced in a way that accepts the
ubiquity of error, and work then to identify and
root out error. (pp. 8-9).

Many activities may be involved in the quest
to identify and root out errors in artifacts of sci-
entific processes. For example, to help root out
errors in deductive science and mathematics the
resulting artifacts (for example, equations) are
subjected to peer review. Similarly, computational
artifacts should be scrutinized. However, just as
artifacts of deductive science cannot be reviewed
in the same way as artifacts of empirical science
(such as physical measurements), reviews of
computational artifacts must be carried out in a
way uniquely suited to the principal artifact of
the computational process, program code. In this
chapter we will focus on two approaches to the
review of program code: code testing and technical
review. Both of these approaches will be grouped
under the umbrella term code scrutinization.

Some topics are not addressed in this chapter.
Firstly, we do not discuss the validation of the
scientific models that underlie scientific programs.
Although it is critical that scientific programs
be built from appropriate scientific models, it
is also critical that models are realized in code
reasonably and accurately. Scientists are experts
at evaluating scientific models, but they are not
necessarily experts at evaluating codes that realize
these models. In our research (Sanders and Kelly,
2009) and work experiences, we have found that
strong model validation practices are often not
matched by strong code scrutinization practices.
For that reason, this chapter avoids discussions

of model validation and devotes itself to code
scrutinization.

Secondly, we do not discuss numerical meth-
ods. Selection of numerical methods, solution
techniques, and algorithms can have a strong
influence on the accuracy of a program, but it is
not our aim to instruct the reader on how to choose
appropriate algorithms. Numerous introductory
and advanced textbooks already offer good cover-
age of the topic. However, we encourage strong
code scrutinization practices to help scientists
discover excessive inaccuracies resulting from
weak algorithms.

Thirdly, we do not discuss the testing of routines
that interact with the world outside the program.
Instead, we focus primarily on the testing of
computational engines.

A Note on Terminology

In the remainder of this chapter, when we use
the word error we mean the quantitative differ-
ence between a measured or calculated value of
a quantity and what is considered to be its actual
value. To indicate a code mistake we will use the
world fault. Note, therefore, that a fault is not an
error, but a fault can lead to an error.

DESCRIPTION OF A
TESTING FRAMEWORK

In general, testing is an investigative activity done
to improve knowledge about the state of the soft-
ware under test. Each test is an experimental trial
of the software. Tests contribute empirical data
required to answer questions about the software.
A testing effort will have knowledge goals that
tests should fulfill when taken in aggregate.

We describe a testing framework that allows the
scientist to better understand how to match their
situation to a testing approach. It requires defining
the context of the testing effort by gathering the
right information and asking the right questions,

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/framework-testing-code-computational-

applications/60359

Related Content

The Role of IoT for Smart Cities: Innovations, Challenges, and Future Prospects
D. Pavunraj, J. Jayalakshmi, S. M. Mustafa Nawaz, K. Anbumaheshwariand A. Mathankumar (2025).

Leveraging Urban Computing for Sustainable Urban Development (pp. 341-370).

www.irma-international.org/chapter/the-role-of-iot-for-smart-cities/375381

The Heart and Brain of SDN: SDN Controllers
Pranav Arora (2018). Innovations in Software-Defined Networking and Network Functions Virtualization

(pp. 100-126).

www.irma-international.org/chapter/the-heart-and-brain-of-sdn/198195

Web Services Gateway: Taking Advantage of the Cloud
Jide Aniyikaiyeand Emmanuel Udoh (2018). Cyber Security and Threats: Concepts, Methodologies, Tools,

and Applications (pp. 804-812).

www.irma-international.org/chapter/web-services-gateway/203535

Cloud Crime and Fraud: A Study of Challenges for Cloud Security and Forensics
Nimisha Singh (2018). Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications (pp.

1334-1350).

www.irma-international.org/chapter/cloud-crime-and-fraud/203563

Optimum Design of Reinforced Concrete Retaining Walls
Rasim Temürand Gebrail Bekda (2018). Handbook of Research on Predictive Modeling and Optimization

Methods in Science and Engineering (pp. 360-378).

www.irma-international.org/chapter/optimum-design-of-reinforced-concrete-retaining-walls/206757

http://www.igi-global.com/chapter/framework-testing-code-computational-applications/60359
http://www.igi-global.com/chapter/framework-testing-code-computational-applications/60359
http://www.irma-international.org/chapter/the-role-of-iot-for-smart-cities/375381
http://www.irma-international.org/chapter/the-heart-and-brain-of-sdn/198195
http://www.irma-international.org/chapter/web-services-gateway/203535
http://www.irma-international.org/chapter/cloud-crime-and-fraud/203563
http://www.irma-international.org/chapter/optimum-design-of-reinforced-concrete-retaining-walls/206757

