
380

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Qichang Chen
University of Wyoming, USA

Liqiang Wang
University of Wyoming, USA

Ping Guo
University of Wyoming, USA

He Huang
University of Wyoming, USA

Analyzing Concurrent
Programs Title for Potential

Programming Errors

ABSTRACT

Today, multi-core/multi-processor hardware has become ubiquitous, leading to a fundamental turning
point on software development. However, developing concurrent programs is difficult. Concurrency
introduces the possibility of errors that do not exist in sequential programs. This chapter introduces the
major concurrent programming models including multithreaded programming on shared memory and
message passing programming on distributed memory. Then, the state-of-the-art research achievements
on detecting concurrency errors such as deadlock, race condition, and atomicity violation are reviewed.
Finally, the chapter surveys the widely used tools for testing and debugging concurrent programs.

DOI: 10.4018/978-1-60960-215-4.ch016

381

Analyzing Concurrent Programs Title for Potential Programming Errors

INTRODUCTION

The development in the computing chip industry
has been roughly following Moore’s law in the
past four decades. As a result, most classes of ap-
plications have enjoyed regular performance gains
even without real improvement on the applications
themselves, because the CPU manufacturers have
reliably enabled ever-faster computer systems.
However, the chip industry is now facing a num-
ber of engineering challenges associated with
power consumption, power dissipation, slower
clock-frequency growth, processor-memory
performance gap, etc. Instead of driving clock
speeds and straight-line instruction throughput
ever higher, the CPU manufacturers are instead
turning to multi-core architectures.

With the prevalence of multi-core hardware on
the market, the software community is witnessing
a dramatic shift from the traditional sequential
computing paradigm to the parallel computing
world. Parallel computing exploits the inherent
data and task parallelism and utilizes multiple
working processes or threads at the same time to
improve the overall performance and speed up
many scientific discoveries. Although threads
have certain similarities to processes, they have
fundamental differences. In particular, processes
are fully isolated from each other; threads share
heap memory and files with other threads run-
ning in the same process. The major benefits of
multithreading include faster inter-thread com-
munication and more economical creation and
context switch.

Here, we use “concurrent” and “parallel” in-
terchangeably, although there is a little difference
between them. Usually, “parallel programming”
refers to a set of tasks working at the same time
physically, whereas “concurrent programming”
has a broader meaning, i.e., the tasks can work at
the same time physically or logically.

Although for the past decade we have wit-
nessed increasingly more concurrent programs,
most applications today are still single-threaded

and can no longer benefit from the hardware
improvement without significant redesign. In
order for software applications to benefit from
the continued exponential throughput advances
in new processors, the applications will need to
be well-written concurrent software programs.

However, developing concurrent programs is
difficult. Concurrency introduces many new er-
rors that are not present in traditional sequential
programs. Recent events range from failing robots
on Mars to the year 2003 blackout in northeast-
ern United States, which were both caused by a
kind of concurrency error called race condition.
Debugging concurrent programs is also difficult.
Concurrent programs may behave differently from
one run to another because parallelism cannot
be well determined and predicted beforehand.
Existing debugging techniques that are well
adopted for sequential programs are inadequate
for concurrent programs. Specialized techniques
are needed to ensure that concurrent programs do
not have concurrency-related errors. Detecting
concurrency errors effectively and efficiently has
become a research focus of software engineering
in recent years.

In the rest of the chapter, we review the state-
of-the-art research achievements on detecting
concurrency errors as well as the corresponding
parallel programming models. Major debugging
tools are also introduced and compared with regard
to their usability and capability.

PARALLEL COMPUTING
PLATFORMS

Advances on Architecture:
Multi-Core Processor

Due to the physical limitations of the technology,
keeping up with Moore’s Law by increasing the
number of transistors on the limited chip area
has been becoming a more difficult challenge for
the CPU industry. In the past decade, we have

34 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/analyzing-concurrent-programs-title-

potential/51981

Related Content

A Systematic Review on the Detection and Classification of Plant Diseases Using Machine

Learning
Deepkiran Munjal, Laxman Singh, Mrinal Pandeyand Sachin Lakra (2023). International Journal of

Software Innovation (pp. 1-25).

www.irma-international.org/article/a-systematic-review-on-the-detection-and-classification-of-plant-diseases-using-

machine-learning/315657

Threat as an Essential Element of Risk Management
 (2023). Adaptive Security and Cyber Assurance for Risk-Based Decision Making (pp. 42-69).

www.irma-international.org/chapter/threat-as-an-essential-element-of-risk-management/320457

A Novel Application of the P2P Technology for Intrusion Detection
Zoltán Czirkosand Gábor Hosszú (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 3391-3398).

www.irma-international.org/chapter/novel-application-p2p-technology-intrusion/29568

Agile Software Development: The Straight and Narrow Path to Secure Software?
Torstein Nicolaysen, Richard Sassoon, Maria B. Lineand Martin Gilje Jaatun (2010). International Journal

of Secure Software Engineering (pp. 71-85).

www.irma-international.org/article/agile-software-development/46153

Systematic Model for Decision Support System
Ramgopal Kashyap (2019). Interdisciplinary Approaches to Information Systems and Software Engineering

(pp. 62-98).

www.irma-international.org/chapter/systematic-model-for-decision-support-system/226396

http://www.igi-global.com/chapter/analyzing-concurrent-programs-title-potential/51981
http://www.igi-global.com/chapter/analyzing-concurrent-programs-title-potential/51981
http://www.irma-international.org/article/a-systematic-review-on-the-detection-and-classification-of-plant-diseases-using-machine-learning/315657
http://www.irma-international.org/article/a-systematic-review-on-the-detection-and-classification-of-plant-diseases-using-machine-learning/315657
http://www.irma-international.org/chapter/threat-as-an-essential-element-of-risk-management/320457
http://www.irma-international.org/chapter/novel-application-p2p-technology-intrusion/29568
http://www.irma-international.org/article/agile-software-development/46153
http://www.irma-international.org/chapter/systematic-model-for-decision-support-system/226396

