
2424242424 Vol. 9 No. 1

Journal of Database Management

Manuscript originally submitted June 18, 1996; Revised December 27, 1996; Accepted January 17, 1997 for publication.

Copyright ©1998, Idea Group Publishing.

Formulating queries to access multiple databases can
be a formidable task especially when many terms from various
databases and complex constraints are involved. To specify a
multidatabase query, the user usually has to search through
documents for exact database terms and learn the
multidatabase language. This report presents QUICK (QUery
Interface to CPL-Kleisli), a graphical user interface to mul-
tiple databases. CPL (Collection Programming Language) is
a high-level multidatabase language built on top of an open
query system Kleisli. QUICK allows users to handle over-
whelming information from different data sources in an intui-
tive and uniform manner. The query specification is reduced
to specifying user’s terms in his/her own world, selecting
paths and specifying constraints in a graph. QUICK is able to
automatically generate a CPL query that corresponds to the
user’s intent. Additional graphical functions are provided for
the user to fine-tune the query generated.

A multidatabase system is a distributed system that acts
as a front end to many autonomous DBMSs and a global layer
above the autonomous DBMSs through a global schema or a
multidatabase language. The global user can access informa-
tion from multiple sources in the multidatabase system in a
single straightforward request. However, the multitude of
information available in multidatabase systems often impedes
the user from quickly formulating a query. One reason is that
the user often has to search through numerous manuals or
documents for exact database terms in order to precisely
specify a query. For example, it is difficult to be sure that
employee identification number is termed “emp_id” and not

A Graphical Interface toA Graphical Interface toA Graphical Interface toA Graphical Interface toA Graphical Interface to
Genome MultidatabasesGenome MultidatabasesGenome MultidatabasesGenome MultidatabasesGenome Multidatabases

Wang Chiew Tan
Ke Wang

 National University of Singapore

 Limsoon Wong
 BioInformatics Centre & Institute of Systems Science

“emp-id” or “employee_id” in the multidatabase. Although
this problem also exists for single database systems, the
magnitude of information in multidatabase environments
makes it a more immediate problem. For instance, the schema
documentation of GDB (Pearson, 1991) (Genome Data Base),
a collection of databases providing human genome informa-
tion, is well over 300 pages. In addition, multidatabase users
are usually occasional users, in the sense that they use their
home databases most of the time and access multidatabases
only occasionally. As such, it is unreasonable to require
multidatabase users to provide exact database terms. Some
form of help should be given to reduce the user’s effort in
query specification.

Traditional textual query formulation requires syntactic
and semantic knowledge of the language. A large number of
graphical user interfaces exists for single database systems
which make query specification more user-friendly. How-
ever, the issue of graphical user interfaces is not
well-addressed in multidatabase systems, see Section RE-
LATED WORK. In this paper, we present a prototype system
QUICK (QUery Interface to CPL-Kleisli) to address this
issue. The CPL (Wong, 1995) (Collection Programming Lan-
guage) is a high level multidatabase language, built on top of
an open query system called Kleisli (Wong, 1995), which can
handle nested relations and structured files. QUICK is a
graphical query interface which translates graphical specifica-
tions into CPL. The purpose of QUICK is to minimize the
effort of end users in formulating queries for multidatabase
systems. QUICK allows fast query formulation even with
sporadic users having neither sufficient knowledge of query
languages, nor extensive prior knowledge of database struc-

2525252525

Journal of Database Management

Winter 1998

tures. QUICK is written in Tcl 7.4/Tk 4.0 and it can be
executed in any unix environment with X-Windows system
and Tcl 7.4/Tk 4.0 installed. To run a query, CPLTCL, a
variant of CPL for interfacing with TCL, is required to be
installed.

Figure 1 shows the overall architecture of the system.
QUICK is running on the Engine module CPLTCL that
executes the query sent by QUICK. To replace CPLTCL by
another multidatabase language, only the Query Composer
and Meta Dictionary need to be replaced. The Thesaurus
Dictionary provides a synonym mapping between user terms
and database terms. The Meta Dictionary contains the schema
information about views and frequently used predicates be-
tween views in the form of graphs. We consider general
predicates that are not necessarily join. The Meta Dictionary
can only be modified by the DBA. The editing of graphs during
a particular user session have no effect on the Meta Dictionary.
Instead, the editing result is saved onto a separate user file kept
in the Data Store. The user can retrieve this file in a later
session. Within the QUICK, there are five main modules. The
Thesaurus is responsible for extracting corresponding data-
base terms for the user specified terms. The View Definition
is responsible for extracting the subgraph that contains the
database terms returned by the Thesaurus. The Graphical
Editor is the core module which supports essential graphical
functions. The IO module is responsible for accessing session
files in Data Store. Finally, the Query Composer generates a
well-formed CPL query from a graphical specification.

There are three layers in the use of this system — the
Thesaurus layer, Graph layer, and CPL layer. A user can enter
the system at any of these layers. An expert user may like to
enter the system at the lowest CPL layer by directly formulat-
ing a query in CPL but in the comfort of the graphical
environment. A naive user may like to enter from the Thesau-
rus layer or Graph layer. The Thesaurus layer is good for users
with minimal knowledge of databases and when only user

terms are known. To map user terms to corresponding data-
base terms, an interactive confirmation by the user may be
needed and certain context information such as description of
database terms and containing views and databases will be
available to help with the confirmation. Based on confirmed
database terms, the View Definition module retrieves the
relevant portion view and schema definitions from the Meta
Dictionary and presents it to the user in the form of a subgraph.
Then the user proceeds to formulate queries using graphical
interface functions provided by QUICK. The user can also
choose to skip the Thesaurus layer and work with the entire
graph or retrieve a subgraph by manually removing the
irrelevant nodes — the Graph Layer. This is suitable for users
with some knowledge of the underlying databases.

Though the use of QUICK in this paper is based on the
Genome databases, QUICK is a generic interface for general
multidatabase applications. For a new application running on
CPL, only new Meta Dictionary and the Thesaurus Dictionary
need to be created (by the DBA); for a new application running
on a multidatabase language other than CPL, the Query
Composer also needs to be substituted. The rest of this paper
is organized as follows. In the next section, we review related
interface work on multidatabase systems. In the section BIO-
LOGICAL DATA SOURCES, we describe the example bio-
logical databases used in this paper. In the section AN APPLI-
CATION WITH QUICK, we show how a multidatabase query
can be formulated with our prototype system QUICK using
some genome databases. The conclusion is given in the last
section.

Related WorkRelated WorkRelated WorkRelated WorkRelated Work

Most multidatabase research projects have emphasized
on schema conflict resolution, query optimization, query
processing and concurrency control. Query formulation for
multidatabase systems has been predominantly textual. For

Figure 1: Overall Architecture of the SystemFigure 1: Overall Architecture of the SystemFigure 1: Overall Architecture of the SystemFigure 1: Overall Architecture of the SystemFigure 1: Overall Architecture of the System

2626262626 Vol. 9 No. 1

Journal of Database Management

example, see Grant (1993) or Krish (1991). Most aim to
perform query transformation and optimization, but have
much neglected the graphical user interface aspect of
multidatabase systems.

Graphical user interface, which has evolved from textual
languages to the WIMP (Windows, Icons, Menus, Pointing
devices) metaphor, is a mature research area for single data-
base systems. A large number of graphical user interfaces
already exist, mostly based on the popular relational databases
(for example, SUPER (Spaccapietra and Tari, 1991) and
CANDID [Schneider, 1991]). There has been a growing
number of graphical user interfaces for object-oriented data-
bases, e.g., Jun and Yoo (1994); Mong (1994). Most of this
interface work focuses on schema editing operations and
navigations, and translation from a graphical specification
into a query program is mostly on a single database system
based on the relational model.

The multidatabase graphical user interface in Towell
(1995) uses the object-oriented approach to structure its data-
bases. Standard retrieval functions are available for accessing
objects. However, the user is still responsible to explicitly
specify which databases, object classes and operations to
invoke. Each instance of a class or attribute is returned in a
separate window, which could be a problem if there are many
instances to be returned. In our approach, the thesaurus helps
naive users to immediately scope down to relevant views and
relationships. Join and selection conditions can be added
dynamically and the results are returned in a nested relation in
one window.

Biological Data StructuresBiological Data StructuresBiological Data StructuresBiological Data StructuresBiological Data Structures

In this paper, the query specification by QUICK will be
demonstrated through an example based on two biological
data sources, namely, GDB (Genome Database) and GenBank
(Burks, et al., 1992). GDB is a Sybase relational database that
supports biomedical research, clinical practice and profes-
sional and scientific education by providing human gene
mapping information. It is an international collaboration spon-
sored by biomedical funding agencies worldwide. GenBank is
a genetic sequence database which is a collection of all known
DNA sequences. We will be accessing GenBank via Network
Entrez which is a retrieval program for a specially formatted
text file that contains all information of GenBank in a certain
release. An average record in this source has over 12 levels of
nesting and over 150 different kinds of subobjects. These
databases are part of the Human Genome Project whose
primary aim is to identify all genes in the human genome and
to sequence 3 billion bases of DNA that comprise the human
genome. These biological sources are chosen for two reasons.
First, it is an open research problem to integrate these genome
databases well (see Goodman [1995]). Second, databases in
the Human Genome Projects are among the most complex and

diverse information sources in the world. The study on such
applications will have general implications on a total solution.

Important genomic data exist in a number of distributed
databases, e.g., GDB is hosted at The John Hopkins University
at Baltimore, Maryland, whereas, GenBank is located at
National Center for Biotechnology, National Institute of
Health at Washington, D. C. They also exist in a number of
different formats. For example, GDB is a Sybase relational
database and GenBank is a data source consisting of structured
files in the ASN.1 (Abstract Syntax Notation) format. These
are just two of the databases in the Human Genome Project. As
genomic data are generally complex structures in its natural
form, many of them are best represented as free text or
structured text files. There is a need to integrate these struc-
tured files with traditional databases.

Genomic data are not only diverse in type, but also large
in size. A typical genetic database can consist of hundreds of
tables and thousands of database terms. GDB version 5.5
contains close to 400 tables and approximately 1,300 database
terms. A typical genetic query usually requires joins spanning
relations in several distributed databases. Currently, there are
many special-purpose HTML forms available on the internet
such as the Entrez Browser (http://www3.ncbi.nlm.nih.gov/
Entrez/index.html), Query Forms for searching data in GDB
(http://gdbwww.gdb.org/gdb/shortcuts.html). As these inter-
face tools only put certain aspects of the data online, they do
not allow flexible access to all the data available. Although
powerful query languages such as CPL offer flexible access to
these data sources, they often require strong syntax and
semantic knowledge of the language before a query can be
formulated. QUICK is one step towards a more flexible and
friendly interface to multiple sources in such applications.

An Application with QUICKAn Application with QUICKAn Application with QUICKAn Application with QUICKAn Application with QUICK

Since CPL is the target query language of QUICK, we
give a brief introduction to it.

CPL uses the comprehension syntax (Buneman, et al.,
1994). A CPL query has the form

{ e | GF_1, ..., GF_n }
called a comprehension. GF_i is of the form y <- R or is a
condition such as “y.#name = z.#name”. e is an expression for
the result to be returned. A CPL query can be read in a way
similar to tuple calculus: “The set of all e such that GF_1, ...,
GF_n.”

For example, in the expression
{(#name:m, #matric_no:n) |
 (#name:\m,#matric_no:\n,...) <- STU-
DENT};

\m is a simple pattern that matches anything and binds it to
“m”. Subsequent references to “m” will use this binding. The
same goes for \n. “...” matches anything. # marks labels or

2727272727

Journal of Database Management

Winter 1998

attribute names. Thus, the above expression matches each
tuple in STUDENT partially.

A “primitive” is analogous to the concept of a function
in programming languages. For example, the primitive below
adds one to its argument, and the statement “addone(8);”
invokes the primitive and the returned result will be 9.

primitive addone == \x => x + 1.
In CPL, the construct for sending a request e to a server

N has the form process e using N. Also, comments are
indicated by “!”.

A Real ApplicationA Real ApplicationA Real ApplicationA Real ApplicationA Real Application
Consider the above four views in Figure 2 derived from

databases GDB and GenBank. View GDB-locus contains the
locus summary information. View GDB-object_
genbank_eref contains the class description of genes. View
GDB-locus_cyto_location contains the information about
chromosomes. View GENBANK-entrez_summary contains
the GenBank summary. The first three views are related
through identifiers locus_id and object_id, and the second and
fourth views are related through attributes genbank_ref and
accession. Relating attributes share a common domain and are
links for specifying across-view queries. An example of a CPL
definition of a view, created by the DBA in the Meta Dictio-
nary, is given below. In our convention, each view name has
the form “DBname-Viewname”. So, GDB-locus means the
view locus derived from database GDB. It is also possible that

a view is derived from more than one database.
GENBANK-entrez_summary is one such example. It con-
tains information from both GDB and GenBank, but the main
information (summary) comes from GenBank. Therefore, we
still call it GENBANK-entrez_summary. By leaving out
“DBname”, the user will be completely unaware of the loca-
tion of each view. However, for clarity, we include database
names as part of node names in the display.

The following shows an example of a CPL definition for
the first view (GDB-locus) in Figure 2. The rest of the views,
also defined in CPL, are kept in the Meta Dictionary and are
automatically referenced by QUICK through involved data-
base terms. That is, the user does not need to input them at all.

primitive GDB-locus ==
 { (#locus:
 (#locus_id: x.#locus_id,

 #locus_loc_summary:
x.#locus_loc_summary,

 #locus_name: x.#locus_name,
 #locus_symbol:
x.#locus_symbol)) |
 \x <- process “select * from locus l
where 1=1” using gdb };

Suppose that we wish to answer the following query:

Figure 2: The views of each node in the subgraph of Figure 4Figure 2: The views of each node in the subgraph of Figure 4Figure 2: The views of each node in the subgraph of Figure 4Figure 2: The views of each node in the subgraph of Figure 4Figure 2: The views of each node in the subgraph of Figure 4

2828282828 Vol. 9 No. 1

Journal of Database Management

Retrieve the GenBank summary and locus summary informa-
tion about human genes on chromosome 20p13. The steps to
specify the query using QUICK are described below.

Step 1. Specify the user terms.Step 1. Specify the user terms.Step 1. Specify the user terms.Step 1. Specify the user terms.Step 1. Specify the user terms.
The user enters terms in his/her own world through the

Thesaurus module. For the above query, user terms are entered
through the following SQL-like statement

SELECT summary, locus, human genes, chromosome
WHERE chromosome=20 and band start=p13

where “locus”, “human genes”, “summary”, “chromosome”,
“band start” are user terms, which are mentioned, explicitly or
implicitly, in the query either as the data to be retrieved or as
the constraint of such data. If the user further knows that this
information is contained in databases “GDB” and
“GenBank”, he/she may enter these database names in a
“WITHIN” sub-statement. Both “WHERE” and “WITHIN”
are optional.

There are important differences between a standard SQL
statement and the above SQL-like statement. First, all terms in
the above statement are user terms, not database terms. Sec-
ond, the above statement does not have the “FROM”
sub-statement because the user is not required to know the
views or nodes containing the required data. In other words,
through the above statement the user specifies what is wanted
in his/her own terms as if there were a universal relation
containing all data items. It is the job of the Thesaurus modules
to map the user terms to database terms, with some degree of
interaction with the user, and to decide and retrieve views
containing the required data which are nodes in graphs con-
tained in the Meta Dictionary. For this example, the Thesaurus
module will retrieve (i) the node GDB-locus (containing the
locus summary information) due to user terms “locus” and
“summary”, (ii) the node GDB-locus_ cyto_location (contain-

Figure 3: Part of chromosome 20 showing the p13 band.Figure 3: Part of chromosome 20 showing the p13 band.Figure 3: Part of chromosome 20 showing the p13 band.Figure 3: Part of chromosome 20 showing the p13 band.Figure 3: Part of chromosome 20 showing the p13 band.

Figure 4: A display of subgraph in Graphical EditorFigure 4: A display of subgraph in Graphical EditorFigure 4: A display of subgraph in Graphical EditorFigure 4: A display of subgraph in Graphical EditorFigure 4: A display of subgraph in Graphical Editor

2929292929

Journal of Database Management

Winter 1998

ing the cytogenetic location information for locus objects) due
to user terms “locus”, “band start” and “chromosome”, (iii) the
node GDB-object_genbank_eref (containing an attribute for
restriction to human genes) due to user term “human genes”.
Since node GENBANK-entrez_ summary provides a cross
reference between GDB and GenBank on nucleic acid entries
and contains information about locus, it is also returned.
Corresponding database terms in these nodes and their infor-
mation are presented to the user for confirmation. The con-
firmed database terms are then passed to the View Definition
module which will extract a subgraph to be displayed on the
Graphical Editor.

Step 2. Edit the retrieved subgraph.Step 2. Edit the retrieved subgraph.Step 2. Edit the retrieved subgraph.Step 2. Edit the retrieved subgraph.Step 2. Edit the retrieved subgraph.
The subgraph retrieved is displayed in Figure 4. A list of

Figure 5: The Selected Edges and Selected PredicatesFigure 5: The Selected Edges and Selected PredicatesFigure 5: The Selected Edges and Selected PredicatesFigure 5: The Selected Edges and Selected PredicatesFigure 5: The Selected Edges and Selected Predicates

Figure 7: Information on the view, by double clickingFigure 7: Information on the view, by double clickingFigure 7: Information on the view, by double clickingFigure 7: Information on the view, by double clickingFigure 7: Information on the view, by double clicking
on the nodeon the nodeon the nodeon the nodeon the node

Figure 6: Information on the edge, by double clicking onFigure 6: Information on the edge, by double clicking onFigure 6: Information on the edge, by double clicking onFigure 6: Information on the edge, by double clicking onFigure 6: Information on the edge, by double clicking on
the edgethe edgethe edgethe edgethe edge

pre-defined predicates is associated with an edge. The CPL
definitions of views for nodes and definitions of predicates for
edges can be examined by clicking on the edge or node, such
as in Figure 6 and Figure 7. Frequently used predicates on
edges are maintained in the Meta Dictionary. However,
predicates can be added or deleted and unwanted nodes can be
deleted during a user session. Such updates are local to the
separately stored session file; the underlying graphs in the
Meta Dictionary remain unchanged. From the displayed sub-
graph the user will select edges and predicates on edges to
compose the query. For the above query, three selected predi-
cates are shown in Figure 5. When the graphical editing is

3030303030 Vol. 9 No. 1

Journal of Database Management

completed, the query is formulated with the click of a button.
A name can be given to a saved query for later references; in
our case, ENTREZ-OBJECT-CYTO-LOCUS.

Step 3. Specifying additional conditionsStep 3. Specifying additional conditionsStep 3. Specifying additional conditionsStep 3. Specifying additional conditionsStep 3. Specifying additional conditions.
The additional conditions that the chromosome is no. 20,

that cytogenetic band at the pter end of the locus location is
“p13”, and that only human genes are of interest, are specified
by selecting the “Add Condition” function in the “Query”
menu on the upper-left part of the window. This window
displays the query in the familiar SQL format. For example,
Figure 9 shows the selection of four attributes from the
intermediate view ENTREZ-OBJECT-CYTO-LOCUS for-
mulated in Step 2 with additional conditions appended to the
WHERE portion of the SQL window. The resulting CPL
query, which is generated automatically by QUICK, is shown
below.

! Connects to databases GDB and Entrez (in
GENBANK) with 1 connection
! each.
connect-to-gdb(1);
connect-to-entrez(1);

! CPL definitions of nodes and predicates
involved are produced here
! but not shown.

! The first intermediate view between
GENBANK-entrez_summary and
! GDB-object_genbank_eref generated by the
Query Composer.
primitive ENTREZ-OBJECT == {
 (#entrez_summary: x.#entrez_summary,
 #object_genbank_eref:
y.#object_genbank_eref) |
 \x <- GENBANK-entrez_summary,
 \y <- GDB-object_genbank_eref,
 JOIN-entrez_summary_object_genbank(x,y)
};

! The second intermediate view between
ENTREZ-OBJECT and
! GDB-locus_cyto_location generated by the
Query Composer.
 primitive ENTREZ-OBJECT-CYTO == {
 (#entrez_summary: x.#entrez_summary,
 #object_genbank_eref:
x.#object_genbank_eref,
 #locus_cyto_location:
y.#locus_cyto_location) |
 \x <- ENTREZ-OBJECT,
 \y <- GDB-locus_cyto_location,
 JOIN_object_cyto(x,y)
};

! The third intermediate view (also the final
view) between
! ENTREZ-OBJECT-CYTO and GDB-locus generated by
the Query Composer.
! The last two conditions are user specified
conditions through
! graphical manipulations.

primitive ENTREZ-OBJECT-CYTO-LOCUS == {
 (#locus: x.#locus,
 #entrez_summary: y.#entrez_summary,
 #object_genbank_eref:
y.#object_genbank_eref,
 #locus_cyto_location:
y.#locus_cyto_location) |
 \x <- GDB-locus,
 \y <- ENTREZ-OBJECT-CYTO,
 JOIN_locus_genbank(x,y),
 y.#locus_cyto_location.#loc_cyto_band_start
= “p13”,
 y.#locus_cyto_location.#loc_cyto_chrom_num
= “20”
};

! The invocation statement.
ENTREZ-OBJECT-CYTO-LOCUS;

Figure 8: Adding the first conditionFigure 8: Adding the first conditionFigure 8: Adding the first conditionFigure 8: Adding the first conditionFigure 8: Adding the first condition

Figure 9: All conditions addedFigure 9: All conditions addedFigure 9: All conditions addedFigure 9: All conditions addedFigure 9: All conditions added

3131313131

Journal of Database Management

Winter 1998

Notice that the Query Composer processes selected
edges in an order that may be indepedent of the user’s selection
order. Also, predicates defined for the edges can be more
general than simply natural join predicates shown in the
example here. For example, we can define
“is-blast-homolog-of” as a predicate which executes the
NCBI BLAST1 (National Center for Biotechnology Informa-
tion Basic Local Alignment Search Tool) program to check
whether a given gene is homologous2 to another. Although
predicates are general and there are many ways in which the
selected edges can be processed, the query result is always
unique due to the way we structure the graph. The CPL engine
also comes with an optimizer which will automatically avoid
materializing intermediate views as well as migrating joins,
selections and projections on GDB to the remote server (see
Ngu, et al. (1993); Buneman, etal. (1995)). Therefore, QUICK
only needs to generate queries by processing the selected
edges in any order.

Step 4. Getting the result.Step 4. Getting the result.Step 4. Getting the result.Step 4. Getting the result.Step 4. Getting the result.
The generated query can be executed with the click of a

button. The result is returned in a window as a nested relation.
An example of the result is shown below.

{ ...
 (locus: (locus_name: “centromere protein B
(80kD)”,
 locus_symbol: “CENPB”,
 locus_id: 58,
 locus_loc_summary: “20p13”),
 entrez_summary:
 (accession: “X55039”,
 uid: 29860,
 title: “Human hCENP-B gene for cen-
tromere
 autoantigen B (CENP-B)”),
 object_genbank_eref:
 (genbank_ref: “X55039”,
 object_class_key: 1,
 object_genbank_id: 66951,
 object_id: 58),
 locus_cyto_location:
 (loc_cyto_band_start: “p13”,
 loc_cyto_band_end: “”,
 locus_id: 58,
 loc_cyto_chrom_num: “20”))
 ... }

In the above example, the user’s effort of specifying a
query is reduced to three steps, that is, specify user terms,
select nodes or edges at the confirm of their on-line definitions,
and specify additional conditions. Thesaurus and browsing
capabilities help the user to quickly and easily recall exact
terms. Any (generic) joins between nodes will be depicted
graphically. Most predicates needed for join conditions will
probably be already available or it can be easily incorporated

into the graph. With QUICK, minimal knowledge of under-
lying databases and CPL are required because the process of
transacting a graphical specification to a CPL query is auto-
mated.

Other than the features shown above, a great deal of
effort is made towards a user-friendly graphical editor. Here
are a few of them. The top menu bar of Figure 4 contains
options “File”, “Query”, “Edit”, and “Help”. QUICK allows
to save the current session and retrieve a saved session for
further editing work in a later time. The “File” menu contains
commands for saving and retrieving a session file. After the
user finishes the graphical specification of the query, he/she
may choose to translate the specification to a named CPL
query, or edit the query manually within QUICK, or run the
query. These functions are contained in the “Query” menu.
Named queries can be further manipulated using the set
functions “Union”, “Intersect” and “Difference” displayed on
the right side of Figure 4. The menu “Edit” contains additional
graphical functions. Among them, “Abstract” and
“Unabstract” allow the user to collect a set of nodes together
under one node or reverse the operation, thus enabling the user
to hide away irrelevant portions for a while and put them back
on the screen when required; “Zoom In” and Zoom Out”
zoomed in or out a portion of a graph in a separate window;
“Clear All Selection” cancels selection of nodes, edges, and
predicates; “Undo” undoes the most recent graph operation.
Nodes and edges can be moved around or deleted and the
graph can be scaled in size to a level comfortable to the user.
The “Help” option will bring up the help information on
various topics in the form of hypertext links. Finally, most
frequently used functions in “File”, “Query”, “Edit” menus
are explicitly displayed below these menus so that only a
single click is needed to use these functions.

ConclusionConclusionConclusionConclusionConclusion

A preliminary prototype interface to multiple autono-
mous heterogeneous databases, called QUICK, is imple-
mented. QUICK translates a graphical specification into
well-formed CPL primitives that can be run on the
CPL-Kleisli system. Graphical functions are supported to
allow the generated query to be enhanced or modified to suit
specific needs. A practical application of this prototype on
heterogeneous genome data sources is presented. QUICK is
one step towards integrating and querying heterogeneous
genome databases.

Due to the nature of interface work, QUICK does not
have much formal theory. However, several principles of
designing a user-friendly interface have been addressed : It
reduces the need for the user to specify the exact database
terms in order to formulate a multidatabase query. It removes
the need for the user to fully grasp a multidatabase language.
Also, a graphical representation and manipulation, transpar-

3232323232 Vol. 9 No. 1

Journal of Database Management

ent of its distributed nature, is used.
Many experiments show that QUICK has been fairly

efficient in helping the user to formulate a correct query
quickly. A few reasons contribute to its efficiency. First, the
minimum need for the users to find out the exact database
terms of data items in databases proves to be useful especially
in the case of the biological data sources which often contain
large and complex data. The second reason is that automati-
cally generated queries remove the need for the user to specifiy
the query using the underlying multidatabase query language
almost entirely. This means less syntax errors and debugging
for the user. Help and explanations are also easily available in
the interface. No formal training needs to be given for the user
to be proficient in using QUICK.

As the future work, we plan to conduct more intensive
and broad experiments with QUICK on large and real world
applications. We also intend to study and extend the expres-
siveness of queries that can be formulated in QUICK. The
ultimate goal of QUICK is to provide a user-friendly interface
for querying large heterogeneous databases such as genome
databases.

EndnotesEndnotesEndnotesEndnotesEndnotes
1 BLAST is a heuristic search algorithm employed by BLAST

programs. The BLAST programs are tailored for sequence similarity
seaching—for example to identify homologs to a query sequence.

2 Two sequences are homologous if they are “similar.”

ReferencesReferencesReferencesReferencesReferences
 Buneman, Peter, Susan Davidson, Kyle Hart, Chris Overton,

and Limsoon Wong (1995). A Data Transformation System for
Biological Data Sources. In Proceedings of 21st International Con-
ference on Very Large Data Bases, 158-169, Zurich, Switzerland.

Buneman,Peter, Leonid Libkin, Dan Suciu, Val Tannen, and
Limsoon Wong (1994). Comprehension Syntax. SIGMOD Record,
23(1):87-96.

Burks, C., M.J. Cinkosky, W.M. Fischer, P. Gilna, J.E Hayden,
G.M. Keen, M.Kelly, D. Kristofferson, and J.D. Lawrence (1992).
GenBank. Nucleic Acids Research, 20 Supplement:2065-2069..

 Goodman, Nathan (1995). Research Problems in Genome
Databases. In PODS, May.

Grant, J., W. Litwin, N. Roussopoulos, and T. Sellis. (1993).
Query Languages for Relational Multidatabases. The Int’l Journal on
Very Large Data Bases, 2(2):153-171, April.

Yong S. Jun and Suk I. Yoo. (1994). A Graph-based Graphical
User Interface for Object-Oriented Databases. In Proc. Of the 1994
Int’l Conf. On Object-Oriented Information System of Data,
238-251, London, England.

Krishnamurthy, R., W. Litwin, and W. Kent (1991).
Interoperability of Heterogeneous Databases with Schematic Dis-
crepancies. In Proc. First Int’l Workshop on Interoperability in
Multidatabase Systems, 144-151, 1991.

Monk, Simon (1994). A Graphical User Interface for Schema
Evolution in Object-Oriented Database. In Proc. of the 2nd Int’l
Workshop on Interfaces to Database Systems, 185-196, Lancaster
University.

Ngu, Anne, Lingling Yan, and Limsoon Wong (1993). Hetero-
geneous Query Optimization using Maximal Subqueries. In Pro-
ceedings of 3rd International Symposium on Database Systems for
Advanced Applications, 413-420, Taejon, Korea, April.

Pearson, P.L. (1991). The genome data base (GDB), a human
genome mapping repositry. Nucleic Acids Research, 19:2237-2239.

Schneider , M. and C. Trepied (1991). Extensions for the
graphical query language CANDID. In Proc. of IFIP 2nd Working
Conf. On Visual Database Systems, 185-199, North Holland, Neth-
erlands.

Spaccapietra, Stefano and Zahir Tari (1991). Super: A compre-
hensive approach to Database Visual Interfaces. In Proc. of IFIP 2nd

Working Conf. On Visual Database Systems, 365-380,
North-Holland, Netherlands.

Towell , Elizabeth R. and William D. Haseman (1995). Imple-
mentation of an Interface to Multiple Databases. Journal of Database
Management, 13-21, Spring .

Wong, Limsoon (1995). The Collection Programming Lan-
guage Reference Manual. The Kleisli Query System Reference
Manual. Institute of Systems Science, Heng Mui Keng Terrace,

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/article/graphical-interface-genome-multidatabases/51190

Related Content

Methods for the Identification of Data Outliers in Interactive SQL
Ronald Dattero, Edna M. Whiteand Marius A. Janson (1991). Journal of Database Administration (pp. 7-

18).

www.irma-international.org/article/methods-identification-data-outliers-interactive/51083

Discovering Quality Knowledge from Relational Databases
M. Mehdi Owrang O. (2009). Selected Readings on Database Technologies and Applications (pp. 95-111).

www.irma-international.org/chapter/discovering-quality-knowledge-relational-databases/28548

Knowledge and Object-Oriented Approach for Interoperability of Heterogeneous Information

Management Systems
Chin-Wan Chung, Chang-Ryong Kimand Son Dao (1999). Journal of Database Management (pp. 13-25).

www.irma-international.org/article/knowledge-object-oriented-approach-interoperability/51219

Bug Fixing Practices within Free/Libre Open Source Software Development Teams
Kevin Crowstonand Barbar Scozzi (2008). Journal of Database Management (pp. 1-30).

www.irma-international.org/article/bug-fixing-practices-within-free/3383

ICT R&D and Technology Knowledge Flows in Korea
Woo-Jin Jungand Sang-Yong Tom Lee (2018). Journal of Database Management (pp. 51-69).

www.irma-international.org/article/ict-rd-and-technology-knowledge-flows-in-korea/227037

http://www.igi-global.com/article/graphical-interface-genome-multidatabases/51190
http://www.irma-international.org/article/methods-identification-data-outliers-interactive/51083
http://www.irma-international.org/chapter/discovering-quality-knowledge-relational-databases/28548
http://www.irma-international.org/article/knowledge-object-oriented-approach-interoperability/51219
http://www.irma-international.org/article/bug-fixing-practices-within-free/3383
http://www.irma-international.org/article/ict-rd-and-technology-knowledge-flows-in-korea/227037

