
1414141414 Vol. 8 No. 1

Journal of Database Management

Manuscript originally submitted April 5, 1995; Revised July 31, 1995; Accepted November 17, 1995 for publication.

Many applications that use a database management
system are required to hold temporal data, although few
commercially available DBMSs provide temporal facilities.
Furthermore, requirements specification techniques, such as
structured methods and Object-Oriented Analysis, typically
do not support a temporal modelling notation. This paper
describes components of temporal modelling, such as granu-
larity, events, and transaction time and introduces a temporal
diagramming notation that is suitable for Object-Oriented
analysis. Examples are furnished of class diagrams for time-
stamped attributes and associations. A logical relational
design for a class diagram is given that could be used as the
basis for physical design of a relational database. The future
direction is represented by temporal modelling of object
reclassifications, which will require access to business model
meta-data.

A common business requirement of management infor-
mation applications is to retain a history of how data have
changed over time. This is particularly the case with financial
and management accounting applications in which a com-
monly found requirement is: to report current year results
using the current chart of accounts; to report current year
results using the previous year’s chart of accounts; and to
report current year results using a future chart of accounts that
will be introduced for the next financial year. Any operational
computer system that requires a history of changes to be
maintained for audit trail purposes, such as a medical informa-
tion system, or for trend analysis, such as a history of budget
forecasts in a Decision Support System, has a need for tempo-
ral modelling of data.

However, many modelling notations push the issue of

time to the periphery. For example, in the Structured Systems
Analysis & Design Method (SSADM), which is the most
widely used system development method in the UK (see
Goodland & Slater, 1995 for a description of SSADM Version
4 and Robinson & Berrisford, 1994 for an Object-Oriented
approach to SSADM), the logical data structure does not
usually feature time as an entity with the consequence that the
need to keep history may be recorded separately as a func-
tional requirement. This can result in a system designed on the
basis of data structures that take little or no account of the need
to hold temporal data. Where a need for history is recognized
it might be accomplished through the introduction of naive
denormalizations. For example, rather than record all the
changes to a customer’s credit limit over time, an upper limit
of three might be imposed, with limit1, limit2, and limit3 being
held as attributes of a Customer entity type. Once a system has
been built and a temporal requirement recognized belatedly
then less than satisfactory work-arounds are often introduced,
such as taking multiple copies of the database and using the
different physical versions to produce the required temporal
effects.

There has been considerable interest in temporal model-
ling in data models and databases and a number of surveys
have been conducted of the literature, including (McKenzie,
1986; Roddick & Patrick, 1992; Snodgrass 1995). Time
semantics have been incorporated in a number of conceptual
modelling techniques and Theodoulidis & Loucopoulos
(1991) describe a number of approaches, including: the
infological data model (Langefors, 1973; Langefors &
Sundgren 1975); the conceptual information model
(Bubenko, 1977); the Time-extended Entity-Relationship
model (Klopprogge, 1983); the Historical Database Model

Temporal Object Modeling:Temporal Object Modeling:Temporal Object Modeling:Temporal Object Modeling:Temporal Object Modeling:
Diagramming Conventions andDiagramming Conventions andDiagramming Conventions andDiagramming Conventions andDiagramming Conventions and

Design ConsiderationsDesign ConsiderationsDesign ConsiderationsDesign ConsiderationsDesign Considerations

Richard Vidgen
UMIST (United Kingdom)

1515151515

Journal of Database Management

Winter 1997

diagrams it is appropriate to consider some basic assumptions
concerning time.

GranularityGranularityGranularityGranularityGranularity
 If we are told that “John Smith became the owner of the

motor car with registration A123 XYZ on 06-Sep-1994” then
it will not be possible to ascertain the ownership of the car at
3:00 pm on 06-Sep-1994 since the change in ownership has
been recorded using a granularity of date. If it is a requirement
to know more precisely the point in the 24 hour period that
transfer of ownership took place then a finer granularity might
be introduced, such as minutes:“John Smith became the owner
of the motor car with registration A123 XYZ at 15:25 hours on
06-Sep-1994.” If we assume that a car must have an owner,
then the fact that the previous ownership ended at 15:24 is
derivable. However, this leaves an indeterminate period of
one minute where the ownership, as reported in a computer
system, is indeterminate. This is not because ownership is
necessarily in dispute in the real world - it arises as a result of
the choice of granularity of time used to record the change in
ownership. Yet finer granularities of time may be introduced
(milliseconds, microseconds, nanoseconds, etc.) but, assum-
ing that time is infinitely divisible, then the indeterminacy can
never be removed entirely.

EventsEventsEventsEventsEvents
Changes in data are attributed to events. For example,

the event “car bodywork colour changes” results in a new
value for the data item colourOfBodywork; the event “prod-
uct price changes” results in a new value for the data item
productPrice. An event is assumed to have a duration of one
unit of time of the finest granularity defined to the temporal
object model. Thus, although events should not be considered
to be instantaneous (of zero duration), this assumption means
that they do not need to be included as permanent aspects of the
temporal object model. This is obviously a simplification that
might be acceptable for some data items, such as
productPrice, where a discrete change might well be a
reasonable assumption. For other items, such as
colourOfBodywork the assumption of a discrete change
might not be sufficient. There can be a significant duration in
changing the colour of a car of hours or even days. During this
period the car is neither one colour nor another and if this is to
be captured in the object model then it will be necessary to
introduce a state that allows cars to be in the state “being re-
sprayed” together with two events such as “re-spray begins”
and “re-spray ends.” Whether this is necessary can only be
decided based upon an analysis of the requirements that the
information system is to satisfy.

FrequencyFrequencyFrequencyFrequencyFrequency
In addition to the granularity of the time interval it is also

useful to specify how frequently the value of a data item may
change. For example, a granularity of date could be used to

(Clifford & Warren, 1983); the Entity Relationship Attribute
Event model (Dubois et al., 1986); and TEMPORA, which has
been developed as part of the European Union ESPRIT initia-
tive (Theodoulidis et al., 1990; 1991). There has also been
considerable work in the area of temporal query languages,
such as ERT-SQL (Entity-Relationship Time Structured
Query Language) (Snodgrass, 1987), including O-O exten-
sions to query languages (see Snodgrass (1995) for a review of
temporal query languages).

 The interest in temporal modelling has grown through-
out the 1980s and, although grounded in a semantic data
modelling and database design tradition, an invitational work-
shop held at the University of Arizona in March 1994 reported
that the participants felt that Object-Oriented data models
provide the most appropriate basis for future work, while
recognizing that temporal object bases are still in the early
stages of development and commercial adoption (University
of Arizona, 1994).

The first objective of this paper is to recommend a
diagramming notation that can be used to capture temporal
business requirements in an object model. Mainstream Ob-
ject-Oriented analysis and design methods, such as that of
Martin & Odell (1992), Coad & Yourdon (1991), and
Rumbaugh et al’s OMT (1991) do not provide a notation for
time-stamping and do not address directly the issue of model-
ling temporal aspects. Although the simplicity of the time-
stamped object model makes it a useful medium for commu-
nication with business/user personnel and for the capture of
requirements, the designer cannot avoid the complexity of
time-stamped data structures when performing logical and
physical design. Therefore, the second objective is to show
how temporal requirements can be modelled in a non-tempo-
ral object model and hence form a basis for implementation in
non-temporal environments. Examples of logical relational
design for time-stamped data structures are also given since
relational technology is still prevalent in practice, particularly
in management information system applications. The third
objective is to consider what contribution an Object-Oriented
(O-O) approach can make to time-stamped data, particularly
through the addition of encapsulated behaviour.

The structure of the paper is as follows: in section 2 some
basic assumptions about temporal characteristics are de-
scribed; in section 3 temporal modelling requirements are
introduced; in section 4 diagramming notations and expanded
class diagrams are developed; section 5 considers how an O-
O paradigm might contribute to temporal modelling; section
6 shows how time-stamped data structures can be imple-
mented relationally; and section 7 introduces the temporal
modelling of state transitions.

Temporal characteristicsTemporal characteristicsTemporal characteristicsTemporal characteristicsTemporal characteristics

Before looking at temporal object modelling and class

1616161616 Vol. 8 No. 1

Journal of Database Management

record changes in product prices, while specifying a maxi-
mum frequency of monthly. This would ensure that any price
change for a specific product is effective for a minimum period
of one month.

Transaction timeTransaction timeTransaction timeTransaction timeTransaction time
Recording the transaction time will make it possible to

distinguish between when the event was recorded and when it
was (will become) effective. Using the example of a product
price change, there are three situations of interest:

• transaction time = effective time: the time at which the
product price change is recorded occurs at the same time as
the price change is effective (contemporaneous);

• transaction time < effective time: the time at which the
product price change is recorded occurs before the price
change becomes effective (future-dated);

• transaction time > effective time: the time at which the
product price change is recorded occurs after the price
change becomes effective (back-dated).

In this paper it is assumed that the time the transaction
occurred is always recorded; it will not be modelled explicitly
in the object model. Also, although we refer to object histories,
it should be apparent that this term also includes future values.

Temporal modellingTemporal modellingTemporal modellingTemporal modellingTemporal modelling

Object model calendar classesObject model calendar classesObject model calendar classesObject model calendar classesObject model calendar classes
Calendar classes are used for specifying temporal char-

acteristics, such as granularity and frequency (figure 1).

Classes are shown as soft boxes and class names begin with an
upper case letter (e.g., Hour), attribute names begin with a
lower case letter (e.g., hourOfDay) and are shown in the
middle section of the class box, and methods are shown in the
bottom section of the class box. Three dots are used to show
that methods and/or attributes have been suppressed for
diagrammatical representation (de Carteret & Vidgen, 1995).
The cardinality of an association is specified using minimum
and maximum values. For example, each instance of the class
Month must be associated with one and only one instance of
Year, while each instance of Year may be associated with
many instances of Month (Martin & Odell, 1992; de Carteret
& Vidgen, 1995). The calendar class can be generalized
(Theodoulidis et al., 1991) and modelled using a recursive
structure; it should also cater for user-defined time, such as
retail periods. Date has been used rather than Day in figure 1,
and Time rather than Second, reflecting their common, if
ambiguous, general usage. The calendar classes are part of the
business object model and will either be supplied by software
vendors or constructed by the developers - either way, the
calendar should be treated as a reusable class structure.

Meta-model classesMeta-model classesMeta-model classesMeta-model classesMeta-model classes
If price is a mandatory attribute for product then price

will be continual over time. Other data items might be
optional, such as telephone number, and therefore have gaps
in their history, thus exhibiting discontinual temporal
behaviour. Assuming that a product can have only one price
at any one time then it is single-valued. If a person can have
more than one telephone number and, assuming that this is of

 Figure 1: calendar classes (fragment) Figure 1: calendar classes (fragment) Figure 1: calendar classes (fragment) Figure 1: calendar classes (fragment) Figure 1: calendar classes (fragment)

1717171717

Journal of Database Management

Winter 1997

interest to the modeller, then telephone number is multi-
valued.

The combinations of continual and discontinual, and
single-valued and multi-valued yield four patterns of temporal
behaviour that will be used to model time-stamped attributes
and associations. The four patterns are: single-valued/con-
tinual; single-valued/discontinual; multi-valued/continual;
and multi-valued/discontinual. These patterns of behaviour
are needed as part of the meta-model (figure 2).

Figure 2 contains a generalization/specialization struc-
ture in which the cardinality of the subclassifications is shown
as 1..1, indicating, for example, that Class must be subclassi-
fied as TemporalClass or NonTemporalClass, but not both
(a subclass group that is mandatory and mutually exclusive).
By contrast, a subclass group cardinality of 0..n would indicate
optional and independent subclasses. The temporal meta-
classes in figure 2 is needed to ensure that time-stamped
attributes and associations conform to the different patterns of
temporal behaviour.

Diagramming conventionsDiagramming conventionsDiagramming conventionsDiagramming conventionsDiagramming conventions

 In this section temporal class diagrams are introduced
for mandatory and optional attributes, one to many associa-
tions, many to many associations, and recursive associations.
In the interests of diagrammatic clarity the method section of
the class boxes has been suppressed.

Mandatory attributeMandatory attributeMandatory attributeMandatory attributeMandatory attribute
Figure 3a shows a Person class, in which the mandatory

attribute address has been marked for time-stamping with the
following class and attribute specification:

Person
name
address (t)

started by: person changes address
ended by: derived
granularity: date Figure 3: time-stamped mandatory attributeFigure 3: time-stamped mandatory attributeFigure 3: time-stamped mandatory attributeFigure 3: time-stamped mandatory attributeFigure 3: time-stamped mandatory attribute

max. back-date: unlimited
max. forward-date: 90 days
 type: single-valued/continual
max. frequency: daily

telephoneNo (o)
dateOfBirth

The temporal characteristics of the address attribute are
shown in italics. Address is a mandatory attribute reflecting
the requirement that “each person must reside at one address.”
This is modelled by a single-valued/continual pattern of tem-
poral behaviour. The started by clause specifies the event(s)
that can cause a history object to be created, in this case
“person changes address.” The ended by clause is derivable
from the next started by time. The granularity is specified as
date, back-dating is unlimited, and future-dating is limited to
three months. The frequency is specified as daily, thus
restricting address changes to one per day.

 Although the user and analyst would communicate
using a notation such as that in figure 3a, the designer will need
to consider the implementation details as shown in figure 3b,
to which a temporal class, AddressHistory has been added.
This class will require that its instances behave according to
the rules of a single-valued/continual pattern of temporal
behaviour. Person has a minimum cardinality of 1 with
respect to AddressHistory since the attribute address is

Figure 2: Temporal Classes in the Meta-modelFigure 2: Temporal Classes in the Meta-modelFigure 2: Temporal Classes in the Meta-modelFigure 2: Temporal Classes in the Meta-modelFigure 2: Temporal Classes in the Meta-model

1818181818 Vol. 8 No. 1

Journal of Database Management

mandatory for Person. The association of AddressHistory
with Date is used to record the date the residence starts - the
date the residence ends is not needed since this fact can be
derived from the next start date. In figure 3b the attribute
dateOfBirth has been replaced by an association between
Date and Person. This is desirable since Date has now been
recognized explicitly as a Calendar class.

An instance of the class AddressHistory is created
whenever the event “person changes address” occurs. To
avoid duplicate or inconsistent address histories, such as two
instances of addressHistory that record the fact that “John
Smith resides at 1 Beech Grove on 1 January 1996” and “John
Smith resides at 10 Ash Drive on 1 January 1996” an “I”
symbol is added to each of the associations that
AddressHistory has with Person and Date to prevent fur-
ther instances of AddressHistory being associated with the
same instance-pairing of Person and Date.

Optional attributeOptional attributeOptional attributeOptional attributeOptional attribute
The attribute telephoneNo is optional and has a single-

valued/discontinual pattern of temporal behaviour, reflecting
the business requirement that, at any one time, “each person
may have one telephone number.” Assume that the Person
class with temporal characteristics defined is now:

Person
name
address
 telephoneNo (o) (t)

started by: person is contactable on
telephone number

ended by: person ceases to be
contactable on telephone
number

granularity: time
max. back-date: unlimited
max. forward-date: unlimited
 type: s i n g l e - v a l u e d /

discontinual
max. frequency: daily

dateOfBirth
When modelling this situation in detail (figure 4b) an

association is needed with Date to record when the telephone
number is no longer valid since this fact cannot necessarily be
derived, as reflected by the minimum cardinality of zero for
Person with respect to TelephoneNoHistory. The model
shows also that the contactForEnds date is optional as this
date will not typically be known at the time a new telephone
number is recorded.

Mandatory one to many associationMandatory one to many associationMandatory one to many associationMandatory one to many associationMandatory one to many association
Associations are marked for time-stamping by the addi-

tion of a box on the association line (figure 5a) (this is similar
to the time-stamping notation used in TEMPORA as described
by Theodoulidis et al., 1991). The mandatory one to many
association has two components: the fact that each motor car
must have one owner requires single-valued/continual
behaviour; and the fact that each person may own many motor
cars requires multi-valued/discontinual behaviour:

Person owns MotorCar ownedBy Person (t)
started by: car ownership changes
ended by: derived
granularity: time
max. back-date: 30 days
max. forward-date: 0 days

Person owns MotorCar
type: multi-valued/discontinual
max. frequency: unlimited

MotorCar ownedBy Person
 type: single-valued/continual
max. frequency: daily

Each time that the event “car ownership changes” occurs
its effect will be captured in the OwnershipHistory class
(figure 5b). As with the mandatory attribute, no end date is
needed since this is derivable from the start date. By specify-
ing the granularity as time and the frequency of MotorCar is
ownedBy Person as daily the time of sale can be captured
accurately while requiring that the period of ownership span at

 Figure 4: time-stamped optional attribute Figure 4: time-stamped optional attribute Figure 4: time-stamped optional attribute Figure 4: time-stamped optional attribute Figure 4: time-stamped optional attribute

1919191919

Journal of Database Management

Winter 1997

least two days. A forward dating of zero requires that all
changes to ownership be either contemporaneous with the
change of ownership occurring, or be back-dated.

 Optional one to many association Optional one to many association Optional one to many association Optional one to many association Optional one to many association
In this case the association between car and owner is

optional since not all cars will have an owner at all times. With
optional associations a second event needs to be captured -
"car ownership ceases” as it is no longer possible to deduce
when the ownership ceased. The association specification is:

Person owns MotorCar
 type: multi-valued/discontinual
 max. frequency: unlimited

MotorCar ownedBy Person
 type: single-valued/discontinual

 max. frequency: daily

As with the optional attribute, an additional association
is needed to record when the ownership ends. It is worth
noting that time-stamped attributes can be promoted to time-
stamped associations. For example, the time-stamped at-
tribute telephoneNo shown in section 4.2 could be made into
an independent entity and then remodelled as in figure 6b.
However, this is not a temporal issue - it is a reflection of the
fact that telephone numbers might be a thing of interest in their
own right.

Many to many associationMany to many associationMany to many associationMany to many associationMany to many association
The expanded time-stamped many to many association

(figure 7b) looks remarkably similar to the optional one to
many model (figure 6b). However, 6a and 7a have different
cardinalities, as reflected by the additional “I” symbol on the
association between Person and OwnershipHistory in fig-
ure 7b. The association specification is:

Person owns MotorCar
 type: multi-valued/discontinual
max. frequency: unlimited

MotorCar ownedBy Person
type: multi-valued/discontinual
max. frequency: daily

To make the ownership of cars mandatory it is necessary
to change the minimum cardinality of MotorCar with respect
to OwnershipHistory from zero to one. To make the many to
many association fully mandatory then in addition change the
minimum cardinality of Person with respect to
OwnershipHistory from zero to one. However, this will not
be sufficient to enforce the required temporal behaviour, since
a person is required to have only one ownership history entry
and therefore ownership of a motor car could cease without a
new owner being appointed. The OwnershipHistory class
should therefore inherit the appropriate behaviour from the
temporal classes shown in figure 2.

Recursive associationsRecursive associationsRecursive associationsRecursive associationsRecursive associations
Recursive associations are a powerful way of meeting

the requirements of management information systems, par-
ticularly in the case of the bill of materials and the hierarchy
(figure 8a).

 The association in figure 8a is fully optional since some
organization units cannot have juniors (the leaf nodes) and one
organization unit cannot have a senior (the root node). If it is
assumed that all organization units with the exception of the
root, must report to one senior then the date when an organi-
zation unit stopped reporting to a particular senior can be
deduced. If it is possible for organization units to exist,
temporarily at least, without a senior then it will be necessary
to introduce an end date. This situation can be demonstrated

 Figure 5: time-stamped mandatory one to many association Figure 5: time-stamped mandatory one to many association Figure 5: time-stamped mandatory one to many association Figure 5: time-stamped mandatory one to many association Figure 5: time-stamped mandatory one to many association

2020202020 Vol. 8 No. 1

Journal of Database Management

more clearly by the introduction of a subclass of
OrganizationUnit as in figure 8b. The association between
OrganizationUnit and OrganizationUnitWithSenior is
then treated in exactly the same way as the non-recursive
mandatory association in figure 5b (figure 8c). Different
cardinalities of recursion, the many to many (bill of materials)
and the one to one (chain) can be resolved similarly.

Temporal modelling and theTemporal modelling and theTemporal modelling and theTemporal modelling and theTemporal modelling and the
management of complexitymanagement of complexitymanagement of complexitymanagement of complexitymanagement of complexity

One of the appeals of adopting an Object-Oriented
paradigm is that it could provide a way of coping with the
complexity of a data model that has temporal capabilities. It
is common practice to assume that a method exists to return the
contents of each attribute of a class, this method having the

same name as the attribute. Thus to find out a person’s address
involves invoking the default method address, supported by
the class Person. With respect to time-stamped attributes we
assume that the method address will have the following
defaults:

address returns current address
address (timepoint) returns address as of timepoint¨
address (timepoint1, returns a set of addresses for the
timepoint2) period starting timepoint1 and

ending timepoint2

This can be shown diagrammatically by adding methods
to the class box (figure 9).

 In the case of the many to many association between
MotorCar and Person, where is the method to sit? It seems
to belong to neither MotorCar nor to Person, but to sit in

 Figure 7: time-stamped optional many to many association Figure 7: time-stamped optional many to many association Figure 7: time-stamped optional many to many association Figure 7: time-stamped optional many to many association Figure 7: time-stamped optional many to many association

 Figure 6: time-stamped optional one to many association Figure 6: time-stamped optional one to many association Figure 6: time-stamped optional one to many association Figure 6: time-stamped optional one to many association Figure 6: time-stamped optional one to many association

2121212121

Journal of Database Management

Winter 1997

between them.
Conceptually this can be thought of as a method owns

implemented by the association Person owns MotorCar and
a method ownedBy implemented by MotorCar is ownedBy
Person. In an O-O implementation this might involve the
establishment of a class OwnershipHistory to support the
methods owns and ownedBy, which would behave with the
same defaults as in the example of the address attribute above
and, possibly, only be accessible by invoking methods at-
tached to Person or MotorCar.

 The complexity of the data structures needed to imple-
ment the time-stamping is hidden through encapsulation; the
default should be to return a value for the current time, thus
involving no additional complexity of message passing where
temporal behaviour is not required for a particular operation.

Relational implementation of a temporalRelational implementation of a temporalRelational implementation of a temporalRelational implementation of a temporalRelational implementation of a temporal
data structuredata structuredata structuredata structuredata structure

Some of the work of maintaining valid history can be
accomplished through the imposition of representational
uniqueness constraints. Consider the time-stamped optional
one to many association and the time-stamped optional many
to many association. These can be seen to have the same shape

(figure 6b, 7b), with a subtle difference in association con-
straints (the “I” symbol). The relational model requires that a
unique identifier be declared explicitly for each table (the
primary key) and, therefore, in a relational implementation
unique identifiers will be required for MotorCar, Date, and
Person.

Assuming that registrationNo can be used to identify
uniquely each occurrence of MotorCar and that personNo
identifies persons uniquely, then a relational design (table 1)
can be developed for the optional one to many association
(figure 6b) and the many to many association (figure 7b),
paying particular attention to primary keys so as to stop
records being added in a relational implementation that would
violate the requirements of the different patterns of temporal
behaviour. In table 1 primary keys are underlined and foreign
keys shown explicitly, together with an associated Foreign
clause (see de Carteret & Vidgen, 1995 for a full description
of this notation). Relational implementation will, of course,
need to be supported by program code that enforces the
different temporal behaviour patterns shown in figure 2.

Temporal modelling of reclassifications (stateTemporal modelling of reclassifications (stateTemporal modelling of reclassifications (stateTemporal modelling of reclassifications (stateTemporal modelling of reclassifications (state
changes)changes)changes)changes)changes)

Temporal modelling of reclassifications can also be
achieved, but is more involved than attributes and associations
since access to a meta-model is needed. Figure 10 shows a
time-stamped generalization/specialization structure. The
addition of a white square to the black generalization/special-
ization triangle indicates that a history of reclassifications is
required. The reclassification history can be modelled as in
figure 11, in which the temporal class
ReclassificationHistory records the different subclassifica-
tions of Employee that each employee takes. For example,
Jones might join on 01-Jan-1992 as an hourly employee, beFigure 9: MethodsFigure 9: MethodsFigure 9: MethodsFigure 9: MethodsFigure 9: Methods

Figure 8: time-stamped recursive one to many associationFigure 8: time-stamped recursive one to many associationFigure 8: time-stamped recursive one to many associationFigure 8: time-stamped recursive one to many associationFigure 8: time-stamped recursive one to many association

2222222222 Vol. 8 No. 1

Journal of Database Management

 one to many (optional) one to many (optional) one to many (optional) one to many (optional) one to many (optional)

MotorCar
registrationNo
 colourOfBodywork

Person
personNo
address

 (o) telephoneNo
 dateOfBirth

Foreign: dateOfBirth∅Date

OwnershipHistory
 registrationNo
dateOwnershipStart
personNoOwns

 (o) dateOwnershipEnd
Foreign: registrationNo∅ MotorCar
Foreign: dateOwnershipStart∅Date
Foreign: dateOwnershipEnd∅Date
Foreign: personNoOwns∅ Person

MotorCar
registrationNo
colourOfBodywork

Person
personNo
address

(o) telephoneNo
dateOfBirth

Foreign: dateOfBirth∅ Date

OwnershipHistory
registrationNo
dateOwnershipStart
personNoOwns

(o) dateOwnershipEnd
Foreign: registrationNo∅MotorCar
Foreign: dateOwnershipStart∅ Date
Foreign: dateOwnershipEnd∅Date
Foreign: personNoOwns ∅Person¨¨

many to many (mandatory and optional)many to many (mandatory and optional)many to many (mandatory and optional)many to many (mandatory and optional)many to many (mandatory and optional)

 Figure 11: implementation of subclassification history Figure 11: implementation of subclassification history Figure 11: implementation of subclassification history Figure 11: implementation of subclassification history Figure 11: implementation of subclassification history

Table 1: Logical relational design for time-stamped 1:n and m:n associationsTable 1: Logical relational design for time-stamped 1:n and m:n associationsTable 1: Logical relational design for time-stamped 1:n and m:n associationsTable 1: Logical relational design for time-stamped 1:n and m:n associationsTable 1: Logical relational design for time-stamped 1:n and m:n associations

SummarySummarySummarySummarySummary

The need to record what happens to attributes, associa-
tions, and reclassifications over time is a common requirement
in management information applications and in any applica-
tion in which a temporal audit trail must be maintained. A

reclassified on 01-Jul-1992 as a contract employee, on 01-Jan-
1993 as a salaried employee, and leave the organization on 15-
Jan-1993. The meta-class Class contains as instances all the
valid business classes, such as Employee and
HourlyEmployee, and would need to be available to the
business model. Although not covered in this paper, different
patterns of temporal behaviour can be defined for the different
cardinalities of subclass groups in the same way that they were
for attributes and associations in section 4 above.

 If the ReclassificationHistory class can be specified
with temporal characteristics that would allow future-dating
then it would be possible to specify future reclassification
dates, such as the end date for a contract, that would trigger a
reclassification at the appropriate time.

 Reclassifications should conform to the valid state tran-
sitions defined for the class in question. Figure 12 shows a
state transition diagram for Employee which could also need
to be available when creating instances of the temporal class
ReclassificationHistory.

Holding different states implies that two levels of dele-
tion will be needed: the first relates to deletions that occur as
part of the life-cycle, a virtual delete, and the second an
absolute temporal delete that removes all trace of an instance.
The virtual delete would allow the DBMS to report that an
object does not exist at time x, although the object would show
up in enquiries with appropriate effective dates (back-dated or
future-dated). There are further issues concerned with aggre-
gation and states. Rumbaugh et al. (1991) point out that
aggregation is an “and-relationship”, in which the aggregate
state is one state from the first diagram, and a state from the
second diagram, and a state from each other diagram (p. 99).
Clearly this situation will be complicated by a requirement to
maintain state change histories.

Figure 10: time-stamped subclassificationFigure 10: time-stamped subclassificationFigure 10: time-stamped subclassificationFigure 10: time-stamped subclassificationFigure 10: time-stamped subclassification

2323232323

Journal of Database Management

Winter 1997

Class diagrams that include notations for time-stamping and
specification of temporal characteristics (a calendar) and
temporal classes have been proposed. One benefit of the
notation is that it is simple and should support communication
between user and analyst/developer. A further benefit of
invoking an O-O paradigm for temporal modelling is that
encapsulation allows the complexity of the temporal data
structures to be hidden and for temporal features to be ignored
when not required.

A logical relational design has been included to demon-
strate how a time-stamped object model can be approximated
in a relational DBMS. Ideally database management systems
would have temporal facilities allowing an easier migration
from design to implementation, but, in the absence of a
temporal DBMS, then CASE tools should be able to generate
automatically structures similar to those presented in this
paper from an object model. In modelling reclassifications,
the need for meta-data to be available in the implementation
environment was noted. Recommendations for practice aris-
ing from this paper are: firstly, systems analysis diagramming
conventions be extended to include time-stamping and tempo-
ral specifications and secondly, commercial CASE tool
support be developed for automatic generation of classes and
relational schemas that support temporal data structures. Fu-
ture research should consider the contribution that an O-O
approach can make to the theory and the practice of temporal
modelling, particularly in the areas of state change histories
and aggregations.

Acknowledgements
The author thanks the anonymous referees for their constructive and
helpful comments on an earlier version of this paper. Thanks are also
due to Carrie de Carteret and Richard Veryard for their patient
discussion, support and encouragement.

ReferencesReferencesReferencesReferencesReferences
Bubenko, J., (1977). The temporal dimension in information

modelling. In: Nijssen, G.M., editor. Architecture and Models in
DBMSs. North-Holland, Amsterdam.

 de Carteret, C., & Vidgen, R., (1995). Data Modelling for
Information Systems. Pitman.

Clifford, J., & Warren, D.S., (1983). Formal Semantics for
Time in Databases. ACM Transactions on Database Systems, 8(2):
214-254.

Coad P., & Yourdon, E., (1991). Object-Oriented Analysis
(2nd edition). Yourdon Press, Prentice-Hall.

Dubois, E., Hagelstein, J., Lahou, E., et al., (1986). The ERAE
Model: a case study. In: Olle, T., Sol, H., & Verrijn-Stuart, A.,
editors. Information Systems Design Methodologies: Improving the
Practice (CRIS-3). North-Holland, Amsterdam.

Goodland, M., & Slater, C., (1995). SSADM Version 4: a
practical approach. McGraw-Hill.

Klopprogge, M. R., (1983). TERM: an approach to include the
time dimension in the E-R model. In P. Chen, editor. Entity-
Relationship Approach to Information Modelling and Analysis.
Elsevier Science/North Holland.

Langefors, B., (1973). Theoretical Analysis of Information
Systems. Student Literature and Auerbach, Lund, Sweden.

Langefors, B., & Sundgren, B., (1975). Information Systems
Architecture. Petrocelli/Charter, New York.

Martin, J., & Odell, J., (1992). Object-Oriented Analysis and
Design. Prentice-Hall. Englewood Cliffs.

McKenzie, E., (1986). Bibliography: temporal databases.
SIGMOD 15(4):40 - 52 Robinson, K., & Berrisford G., (1994).
Object-Oriented SSADM. Prentice-Hall International.

Roddick, J., & Patrick, J., (1992). Temporal Semantics in
Information Systems - a survey. Information Systems, 17(3): 249-
267.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen,
W., (1991). Object-Oriented Modeling and Design. Prentice-Hall,
Englewood Cliffs, New Jersey.

Snodgrass, R., (1987). The Temporal Query Language TQuel.
ACM Transactions on Database Systems, 12 (2): 247-298

 Snodgrass, R., (1995). Temporal Object-Oriented Databases:
a critical comparison. In: Kim, W., editor, Modern Database
Systems: the object model, interoperability, and beyond. The ACM
Press, New York.

Theodoulidis, B., Wangler, B., & Loucopoulos, P., (1990).
Requirements specification in TEMPORA. Second Nordic Confer-
ence on Advanced Information Systems Engineering (CAiSE-90).
Kista, Sweden.

Theodoulidis, B., Loucopoulos, P., & Wangler, B., (1991). A
Conceptual Modelling Formalism for Temporal Database Applica-
tions. Information Systems, 16(4): 401-416.

Theodoulidis, C., & Loucopoulos, P., (1991). The Time
Dimension in Conceptual Modelling. Information Systems, 16(3):
273 - 300.

University of Arizona, (1994). Towards an Infrastructure for
Temporal Databases. Report of an invitational ARPA/NSF work-
shop (TR 94-01).

 Figure 12: state transition diagram for Employee Figure 12: state transition diagram for Employee Figure 12: state transition diagram for Employee Figure 12: state transition diagram for Employee Figure 12: state transition diagram for Employee

Richard Vidgen obtained a first degree in Computer Science & Accounting and a MSc in Accounting , both of which were awarded
by the University of Manchester. He then developed and supported financial applications software for MSA Inc. (now Dunn &
Bradstreet Software), followed by a number of years working as a freelance consultant, engaged in the design and implementation
of IT solutions for the banking and insurance industries. In 1992 he was appointed to a lectureship at the University of Salford,
where he completed a Ph.D. in the area of information systems quality. He is currently a lecturer in the Department of Computation
at UMIST researching data and object modelling requirements engineering and IS quality.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/article/temporal-object-modeling/51173

Related Content

Privacy-Preserving Outsourced Similarity Search
Stepan Kozak, David Novakand Pavel Zezula (2014). Journal of Database Management (pp. 48-71).

www.irma-international.org/article/privacy-preserving-outsourced-similarity-search/118088

From Databases to Ontologies
Guntis Barzdins, Janis Barzdinsand Karlis Cerans (2009). Database Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 2360-2383).

www.irma-international.org/chapter/databases-ontologies/8042

Integrity Issues in the Web: Beyond Distributed Databases
Jose F. Aladana Montes, Mariemma I. Yague del Valleand Antonio C. Gomez Lora (2002). Database

Integrity: Challenges and Solutions (pp. 293-321).

www.irma-international.org/chapter/integrity-issues-web/7885

Information Modeling and Method Engineering: A Psychological Perspective
Keng Siau (1999). Journal of Database Management (pp. 44-50).

www.irma-international.org/article/information-modeling-method-engineering/51226

Geometric Quality in Geographic Information
José Francisco Zelasco, Gaspar Portaand José Luis Fernandez Ausinaga (2005). Encyclopedia of

Database Technologies and Applications (pp. 266-270).

www.irma-international.org/chapter/geometric-quality-geographic-information/11157

http://www.igi-global.com/article/temporal-object-modeling/51173
http://www.irma-international.org/article/privacy-preserving-outsourced-similarity-search/118088
http://www.irma-international.org/chapter/databases-ontologies/8042
http://www.irma-international.org/chapter/integrity-issues-web/7885
http://www.irma-international.org/article/information-modeling-method-engineering/51226
http://www.irma-international.org/chapter/geometric-quality-geographic-information/11157

