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The first step in interoperating among multidatabases is
semantic integration: Producing attribute correspondences
that describe relationships between attributes or classes in
different database schemas. Dynamic integration requires the
ability to automatically extract database semantics, express
them as metadata, and match semantically equivalent data
elements to produce attribute correspondences. This process
can not be “pre-programmed” since the information to be
accessed is heterogeneous. In this paper we present an archi-
tecture supporting dynamic integration. We first overview a
tool, Semint, for automated semantic integration that helps
database administrators generate attribute correspondences.
We then introduce a novel framework for dynamic integration
and a query language for multidatabase systems that uses
Semint as part of a complete semantic integration service. Our
framework supports dynamic integration as well as incremen-
tal integration. We show the advantages of our framework in
an environment where full integration is not desired or com-
plete knowledge of the databases to be integrated is unavail-
able.

Applications in a wide variety of industries require
access to multiple heterogeneous databases due to company
mergers, the introduction of new database technology, or
integrating information across departments. There are two
ways to integrate existing information systems: reengineering
and interoperation. In reengineering, the application logic,
data definition, and data from the old systems are transferred
into a new system. The advantage of reengineering is that the
new systems are easier to maintain. However, this process is
expensive and complicated.

The second option is to allow the existing systems to
interoperate as a multidatabase system by putting a new,
standard interface on existing databases. This preserves the
data and applications from the existing databases, yet allows
access to the data from new multidatabase applications. This
transforms the existing databases into open databases.
Interoperability allows computing resources to be shared,
thereby giving organizations a new resource and a uniform,
enterprise-wide and database-independent view of data.

The goal of integrating interoperable multidatabases is
to provide an enterprise-wide information system where users
can access information through an unified interface without
knowing the details of each participating component database.
This gives a computer paradigm of a large number of informa-
tion sources that are heterogeneous in semantics and format.
Automatically extracting and understanding the semantics of
information and format conversion are important issues to
information integration and such metadata should be based on
the contents of the information available.

Techniques essential to information integration include
extracting semantics, transforming formats, identifying at-
tribute correspondence, resolving heterogeneity, multidatabase
query processing, and data integration. In order to answer
queries in multidatabase systems, three distinct processes
need to be performed by the user, database administrator, and/
or system as shown in Figure 1. The Schema Integration
process includes a possible schema transformation step, fol-
lowed by correspondence identification, and an object integra-
tion and mapping construction step [Parent and Spaccapietra,
1995]. In Query Processing, global queries are reformulated
into subqueries, the subqueries are executed at the local sites,
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and their results are assembled at a final site. The Data
Integration process is complimentary to Query Processing,
i.e., it determines how the results from different local data-
bases should be merged and presented at the final site.

The concept of dynamic integration rests on the premise
that knowledge (metadata) needed to integrate information is
provided by or can be extracted from databases directly. This
allows computer “mediators” to handle the heterogeneity so
end-users and non-computer experts can access useful data.
The formats of data and its semantics presentation are not
expected to be standardized, developing schemas to integrate
this data is a mediation task [Wiederhold, 1992]. An automatic
process for extracting and transforming data semantics is also
an important issue as the volume and variation of accessible
data increases.

The ProblemThe ProblemThe ProblemThe ProblemThe Problem
We are concerned with one area in interoperable

multidatabases: dynamic integration. We argue that attribute
correspondence identification is a primary bottleneck in inte-
gration and query processing of multidatabases. For example,
users of heterogeneous databases may issue a query that joins
two relations in different databases; to do this they must know
what attributes in the relations can be used as a join key. If the
attribute correspondences between the databases are known,
finding a join key is a simple process. However, if these
databases have not been integrated or users are not familiar
with the attribute correspondences, multidatabase queries
cannot be issued. Attribute correspondences are also essential
to data integration —merging results from component data-
bases.

We argue that the solution to this problem is to automate
the process of attribute correspondence identification. Human
effort is still necessary in database integration unless the
semantics of data can be captured completely and the tech-
niques of artificial intelligence is mature to act as an domain
expert. Domain knowledge is a necessary part of any semantic

integration system; we cannot count on the available metadata
completely and accurately describing the semantics of the
data. We categorize the approaches to attribute correspon-
dence identification, based on when human effort is required,
as follows:

Manual integration:Manual integration:Manual integration:Manual integration:Manual integration: Human effort is needed to collect
metadata from databases that captures the semantics of data.
The semantics may be embodied within a database model, a
conceptual schema, application programs, or the minds of
users. Humans need to be involved in collecting metadata and
matching corresponding attributes. The manual integration is
tedious and time consuming. Some corporate experiences of
manual integration were described in [Ventrone and Heiler,
1994].

Semiautomated integration: Semiautomated integration: Semiautomated integration: Semiautomated integration: Semiautomated integration: In this approach, tools are
used to collect metadata and generate candidates for corre-
sponding attributes. DBAs (Database Administrators) need to
be involved in checking and confirming the recommendations
of the tools. Multidatabase queries can not be issued until
attribute correspondences are generated. An example of this
kind of tool is described in [Li and Clifton, 1994,Li and
Clifton, 1995].

Dynamic integration:Dynamic integration:Dynamic integration:Dynamic integration:Dynamic integration: Users can issue queries before
attribute correspondences are generated. The attribute corre-
spondence identification process is carried out dynamically.
Collecting metadata and generating candidate attribute corre-
spondences are automated. Users need to check multidatabase
query results rather than attribute correspondences. As users
are generally “domain experts” on data stored in databases (or
at least the data they are interested in), as opposed to experts
in schema design, the query results are more meaningful to
users than attribute correspondences.

An interface providing semiautomated or dynamic inte-
gration needs to utilize available metadata that can be auto-
matically extracted from databases. An automated tool for
identifying attribute correspondences can help to open this
bottleneck, allowing dynamic integration and query process-

Figure 1: Multidatabase Query ProcessingFigure 1: Multidatabase Query ProcessingFigure 1: Multidatabase Query ProcessingFigure 1: Multidatabase Query ProcessingFigure 1: Multidatabase Query Processing
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ing in multidatabases.
Our dynamic semantic integration procedure makes use

of an automated tool based on neural networks to identify
candidate attribute correspondences. The query processing
step uses these attribute correspondences to reformulate
multidatabase queries.

Paper OrganizationPaper OrganizationPaper OrganizationPaper OrganizationPaper Organization
The rest of this paper is organized as follows. In Section

2 we review issues and related work in multidatabase and
federated database systems. In Section 3 we briefly describe
the semantic integration tool, Semint, used in our dynamic
integration framework. Section 4 describes how Semint can
assist DBAs in generating attribute correspondences to de-
velop an integrated schema (semiautomated integration). In
Section 5 we provide a new framework for multidatabase
query processing, dynamic integration, that does not required
advance determination of attribute correspondences. We pro-
vide sample queries to illustrate our method and discuss the
advantages of our approach. Finally, we conclude this paper
with a discussion of the benefits of this method and areas for
future work.

Related WorkRelated WorkRelated WorkRelated WorkRelated Work

  We will first review some general work in multidatabase
systems, then describe previous work in data and semantic
integration. We then discuss how this work differs from
previous systems, and the added benefit provided.

Multidatabase SystemsMultidatabase SystemsMultidatabase SystemsMultidatabase SystemsMultidatabase Systems
Early work in multidatabase architectures focused on

procedures to merge individual schemas into a single global
conceptual schema. [Batini et al., 1986] surveyed 12 methods
for constructing global schemas. The global schema
multidatabase approach requires complete integration: the
global schema must map all local schemas to a single global
view. The amount of knowledge required about local schemas
and how to identify and resolve heterogeneity among the local
schemas is a major problem with this approach. The global
schema must be developed before any queries can be issued.
Changes to local schemas must be reflected by corresponding
changes in the global schema. This causes major difficulties in
maintaining the global schema. Because of the complexity of
a global schema, a small change to a local schema (e.g. add or
delete an attribute) may require huge changes to the global
schema. To visualize this, assume 50 local schemas have been
merged into a global schema. If each local schema changes
once per year, the global schema DBA needs to change the
global schema weekly. Goh et al. (1994)  argues existing a
priori or static integration strategies might provide satisfac-
tory support for small or static systems, but not for large-scale
interoperable database systems operating in a dynamic envi-
ronment.

Federated databases [McLeod and Heimbigner, 1980,Par-
ent and Spaccapietra, 1995] are an approach that resolves
some of the problems associated with global schema. Feder-
ated databases only require partial integration. A federated
database integrates a collection of loosely coupled local data-
base systems by supporting interoperability between pairs or
collections of the local databases rather than through a com-
plete global schema. However, although the impact of a
change to a local schema may be smaller; any change to the
local schema may require some change to the federated
schema. Maintaining these mappings is still difficult.

Multidatabase languages are an attempt to resolve some
of the problems associated with a global schema. With these
systems, no global schema (not even a partial one) is main-
tained. Examples of multidatabase languages include [Hwang
et al., 1984,Litwin et al., 1989,Scheuermann and Chong,
1994,Bright et al., 1994]. This approach puts the integration
responsibility on users by providing functionality beyond
standard SQL to allow users to specify integration information
as part of the query.

This is a heavy burden to place on users, however. We
instead view the multidatabase language as an intermediate
language, to be used for query processing after schema inte-
gration issues have been resolved. We use MSQL [Litwin et
al., 1989] as the basis for our query language.

Data IntegrationData IntegrationData IntegrationData IntegrationData Integration
  Data integration is concerned with difficulties of com-

bining data values that reflect the same information for the
same entity from multiple databases. Multidatabase languages
are usually similar to SQL in their standard capabilities, but
provide a global name space to hide the heterogeneity of
accessing particular remote databases (database instances)
and special functions to ease problems of data heterogeneity
such as new types of information presentation. These func-
tions are provided for data integration. Structural differences
are usually resolved by one of three methods: outerjoin opera-
tions (Rosenthal and Reiner, 1984), generalizations (Hwang et
al., 1984), or multiple relations (Litwin et al., 1989). However,
these methods still require static data integration; how to
resolve structural differences must be known before the query
is issued.

Schema IntegrationSchema IntegrationSchema IntegrationSchema IntegrationSchema Integration
Parent and Spaccapietra (1995) identified three major

steps in the database integration process: Pre-integration to
rearrange input schemas to be more homogeneous, correspon-
dence identification, and Integration. Multidatabase languages
eliminate the need for complete integration, but correspon-
dence identification is still required to determine the Global
ID. Sheth and Kashyap (1992)  argued that identifying seman-
tically related objects and then resolving the schematic differ-
ences is the fundamental question in any approach to database
system interoperability.



3131313131Winter 1996

Journal of Database Management

We refer to the process of identifying corresponding
attributes as semantic integration. In semantic integration,
attributes (classes of data items) are compared in a pairwise
fashion to determine their equivalence. Li and Clifton (1994)
categorized metadata that can be automatically extracted from
databases as: attribute names (the dictionary level), schema
information (the field specification level), and data contents
and statistics (the data content level). Problems encountered
here are that synonyms occur when objects with different
names represent the same concepts, and homonyms occur
when the names are the same but different concepts are
represented. From GM’s efforts in integration [Premerlani and
Blaha, 1994], attribute names were not sufficient for semantic
integration; only a few obvious matches were found. How-
ever, similarities in schema information were found to be
useful. For example, it was discovered in one case that at-
tributes of type char(14) were equivalent to those of char(15)
(with an appended blank).

Sheth et al (1988) concentrated on interactive support for
manual semantic integration. MUVIS [Hayne and Ram, 1990]
is a system for view integration where object equivalence is
determined by using “fixed rules” to compare the aspects of
each and computing a weighted value for similarity and
dissimilarity. [Li and Clifton, 1994] applied neural network
techniques to semantic integration, the knowledge of how to
match equivalent data elements is “discovered” directly from
metadata, not “pre-programmed”. A more complete overview
of Semint is given in Section 3. Some of these approaches are
highly automated, but the integration must still be done before
the query is written.

This paper presents a technique where this integration is
dynamic; any manual effort in schema integration is done only
after the query is complete, and need only be done for the
results of the query. Therefore the only “static” information
needed is how to query different DBMS types (gateways and
standards are likely to solve this problem). All database
specific integration is handled after the query is issued. This
reduces the a priori  or static effort required for schema
integration to that of multidatabase languages (query transla-
tion to different DBMS types), while relieving the user of
providing “federated schema” knowledge when issuing the
query. We will now give more detail on Semint, then discuss
our dynamic integration model.

Semantic Integration ProcessSemantic Integration ProcessSemantic Integration ProcessSemantic Integration ProcessSemantic Integration Process
  Semint (SEMantic INTegrator) [Li and Clifton, 1995]

is a system for semantic integration based on [Li and Clifton,
1994]. Semint makes use of the fact that attributes in different
databases that represent the same real-world concept will
likely have similarities in schema designs, constraints, and
data value patterns. For example, employee salaries in two
databases will probably be numbers greater than 0 (this is
structural similarity, as it can be determined from constraints).
The same can be said for daily gross receipts. However, the
range and distribution of data values will be very different for
salaries and gross receipts. From this we can determine that
two salary fields probably represent the same real-world
concept, but gross receipts are something different.

Databases to be integrated are accessed directly using
automatic “catalog parsers”. Figure 2 outlines the semantic
integration procedure in Semint. In this procedure, DBMS
specific parsers extract metadata (schema and data content
statistics) from databases and transform them into a single
format (so they can be compared). Then, a classifier is used to
learn how to discriminate among attributes in a single data-
base. The classifier output is used to train a neural network to
recognize categories; this trained network can then determine
similar attributes between databases.

Note the only human input is to specify DBMS types and
database connection information and to examine and confirm
the output results (similar pairs of attributes and the similarity
between them). Other processes are fully automated. Semint
automatically extracts schema information from a database,
analyzes data contents to generate statistics, transforms data-
base metadata into a single format, builds and trains neural
networks, and uses trained neural networks to determine their
similarity and identify similar attributes (whose degrees of
similarity are greater than similarity threshold set by the
users). Semint has three components: A DBMS specific parser,
Classifier, and Neural Network.

DBMS Specific ParserDBMS Specific ParserDBMS Specific ParserDBMS Specific ParserDBMS Specific Parser
The information used in Semint is extracted from the

database automatically. The parser queries the data dictionar-
ies to determine what is in the database. Based on this, Semint
generates queries to extract information about each attribute.

Figure 2: Overview of the Semantic Integration Procedure in SemintFigure 2: Overview of the Semantic Integration Procedure in SemintFigure 2: Overview of the Semantic Integration Procedure in SemintFigure 2: Overview of the Semantic Integration Procedure in SemintFigure 2: Overview of the Semantic Integration Procedure in Semint
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Although different DBMSs use different data dictionaries to
contain schema information and integrity constraints, these
DBMS specific parsers are similar. Semint automatically
extracts schema information and constraints from the database
catalogs and statistics on the data contents using queries over
the data. The schema information used in Semint includes data
types, length, scale, precision, and existence of constraints
(primary keys, foreign keys, candidate keys, value and range
constraints, disallowing null values, and access restrictions).
The statistics on data contents used in Semint include maxi-
mum, minimum, average (mean), variance, coefficient of
variance, existence of null values, and existence of decimals.
The information extracted from different databases is then
transformed into a single format and normalized. The parser
output is a set of vectors; each vector presents the characteris-
tics (schema and data contents) of an attribute.

ClassifierClassifierClassifierClassifierClassifier
The available information from an individual database

discussed above is used as input data for a classifier to
categorize attributes within a single DBMS. Semint uses the
Self-Organizing Map algorithm, an unsupervised learning
algorithm, as the classifier. We have adapted this algorithm so
that users can determine how fine these categories are by
setting the radius of clusters (threshold) rather than the number
of categories; if desired users may examine the output and
adjust this threshold to cluster like attributes together. The
output of the classifier is the vectors of cluster center weights.

Neural NetworksNeural NetworksNeural NetworksNeural NetworksNeural Networks

  The output of the classifier is then used as training data
for a back-propagation network, a supervised learning algo-
rithm. The “supervision” is that target results are provided;
however as these target results are the output of the classifier,
no user supervision is needed. We use this to train a network
to recognize input patterns and give degrees of similarity. The
similarities are a measure of how close the vector describing
an input pattern is to each of the vectors of the training data.
The “distance function” for close is not predefined, but is
learned directly from the database semantics during the train-
ing process, and will vary depending on the information
contained in the database (allowing Semint to adjust itself to
different database domains). Therefore similarity does not
correspond to a percentage or fixed distance function, but is a
domain-specific value that can be used to rank the likelihood
that two attributes reflect the same real-world information.

To determine similar attributes between two databases,
users take the network trained for one database, and use
information extracted from the other database as input to this
network. The network then gives the similarity between each
pair of attributes in the two databases. System users check and
confirm the output results.

In Figure 3, the attributes in database 1 are clustered into
four categories using classifier and the cluster center weights
are then used to train neural network. After the neural network
is trained (it knows the “signatures” of these four categories),
it matches the attributes in database 2 with these categories
classified from database 1.

In the example shown in Figure 4, we want to integrate
Faculty and Student databases. Semint first uses DBMS spe-

Figure 3: Example of Attribute Correspondence Determination ProcessFigure 3: Example of Attribute Correspondence Determination ProcessFigure 3: Example of Attribute Correspondence Determination ProcessFigure 3: Example of Attribute Correspondence Determination ProcessFigure 3: Example of Attribute Correspondence Determination Process
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cific parsers to extract metadata (schema design, constraints,
and data content statistics) from these two databases. The
metadata form “signatures” of the attributes in the Faculty and
Student databases. These are used as training data for neural
networks to recognize these attributes’ patterns. The trained
neural network can then generate attribute correspondences
between the Faculty and Student databases and the degree of
similarity of each pair of corresponding attributes as shown on
the right side of Figure 4. How to match corresponding
attributes and determine their similarity is “learned” during
the training process directly from the metadata used as the
training data.

The semantic integration process can be static (done in
advance) or dynamic (carried out on demand when required by
a query) as described in Section 5. In either case, the neural
network training process needs to be done only once per
database. Once the network is trained, integration with a new
database only requires running information from the new
database through the neural network (a sub-second process [Li
and Clifton, 1994]). This automated semantic integration
ability of Semint makes it a useful tool for dynamic integra-
tion.

Semiautomated Integration in MultidatabasesSemiautomated Integration in MultidatabasesSemiautomated Integration in MultidatabasesSemiautomated Integration in MultidatabasesSemiautomated Integration in Multidatabases

One problem in multidatabase system integration is that
DBAs are responsible for collecting metadata from compo-
nent databases and determining matching attributes. It is
usually done manually; as a result, it is tedious and inefficient.
In this section, we show how Semint is used to assist DBAs in
performing this mapping and constructing a conceptual inte-
grated schema. We use an example scenario to demonstrate
this process.

Constructing the Conceptual Integrated SchemaConstructing the Conceptual Integrated SchemaConstructing the Conceptual Integrated SchemaConstructing the Conceptual Integrated SchemaConstructing the Conceptual Integrated Schema
Assume that our multidatabase integrates two local

schemas, namely FACULTY (SS#, Faculty_Name, Salary)

and STUDENT(Stud_ID, Stud_Name, Stipend, Tel#), as
shown in Figure 5. The DBAs first specify DBMS type and
connection information. Semint then accesses the target data-
bases to generate attribute correspondences. The attribute
correspondences and their similarity as recommended by
Semint (with similarity threshold set to 0.8) are as follows:

(Faculty.SS#, Student.Stud_ID, similarity = 0.98)
(Faculty.Facu_Name, Student.Stud_Name, similarity = 0.91)
(Faculty.Salary, Student.Stipend, similarity = 0.85)

Now DBAs use the attribute correspondences recom-
mended by Semint as a template to construct a conceptual
integrated schema. The conceptual integrated schema, Em-
ployee, is constructed following the procedure below:

Step 1: DBAs check and confirm the result recommended by
Semint.

Step 2: DBAs assign a new attribute name for each pair of
corresponding attributes to resolve naming conflicts.
After this step, DBAs generate a table such as:

Employee.ID = (Faculty.SS#, Student.Stud_ID)
Employee.Name = (Faculty.Facu_Name, Student.Stud_Name)
Employee.Salary = (Faculty.Salary, Student.Stipend)

Step 3: DBAs then add attributes that are found in only one
database, such as Student.Tel#. Student.Tel#.

The conceptual integrated schema is now completed:

 [ Conceptual Integrated        [ Component Database
         Schema ] Schema ]

       Employee                            Faculty             StudentEmployee                            Faculty             StudentEmployee                            Faculty             StudentEmployee                            Faculty             StudentEmployee                            Faculty             Student
           ID                                       SS#                Stud_ID
         Name                              Facu_Name      Stud_Name
       Salary                                   Salary              Stipend
     Tel_num                                                          Tel#

Figure 4: Example of Semantic Integration in SemintFigure 4: Example of Semantic Integration in SemintFigure 4: Example of Semantic Integration in SemintFigure 4: Example of Semantic Integration in SemintFigure 4: Example of Semantic Integration in Semint
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Query Language and ProcessingQuery Language and ProcessingQuery Language and ProcessingQuery Language and ProcessingQuery Language and Processing
Users can now submit a multidatabase query against

Employee directly without specifying intradatabase join con-
ditions.3  The multidatabase query extends the standard SQL
by allowing users to specify attributes in a conceptual inte-
grated schema such as Employee.ID. A brief description of the
extended multidatabase query language is:

MULTISELECT attribute names in the conceptual
integrated schema

FROM  conceptual integrated schema
WHERE selection conditions

The “MULTISELECT” clause specifies which attributes
to retrieve. The “FROM” clause specifies the names of con-
ceptual integrated schema. The “WHERE” clause specifies
the selection conditions. We now use a sample query to
demonstrate multidatabase query processing. We know that
Employee contains both faculty and student information and
we know some students may not have a stipend. Imagine that
we are preparing a tax report. We want to know

Who is on the university payroll?

The query can be posed as:
MULTISELECT *
FROM Employee
WHERE Employee.Salary > 0

This query is then reformulated into two subqueries for
databases Faculty and Student and executed. We have shown
how Semint assists in generating attribute correspondences,
that are then used as a template to construct a conceptual
integration schema. Although some tools (such as Semint
described here) can assist DBAs in collecting metadata and
matching related attributes, attribute correspondences and a
conceptual integration schema still need to be generated
before multidatabase queries can be issued. This poses a
problem when the need for integration is not known in advance
(for example, browsing for information in various databases).
It is also requires that complete knowledge of the databases to
be integrated be available (or learned by the DBA), even if

complete knowledge would not be required to answer any
particular query.

In the next section, we present a dynamic integration
framework to solve the problems described above. In this
framework, Semint is used as a tool to generate attribute
correspondences dynamically, a conceptual integration
schema need not be generated before multidatabase queries
can be issued.

Dyamic Integration in MultidatabasesDyamic Integration in MultidatabasesDyamic Integration in MultidatabasesDyamic Integration in MultidatabasesDyamic Integration in Multidatabases

Dynamic data integration methods, such as MSQL,
require that mappings between attributes be known to generate
a query. A complete Conceptual Integrated Schema is not
required, however the attribute correspondences must be
known for any “global” attributes used in the query. This
requires some schema integration (attribute correspondence
identification). We present an approach for dynamic data
integration and query processing where we release the as-
sumption that attribute correspondences are known in ad-
vance. MSQL is extended to allow the absence of information
about the attribute correspondences, and Semint is used as a
dynamic integration tool. In our framework, users specify
wildcards for attribute names where the mapping is unknown
or schema integration is not available. Semint determines
potential correspondences to replace the wildcards. The
multidatabase query (or queries if more than one candidate
arises for each correspondence) are then executed as regular
MSQL queries. The result is presented to the user as a set of
tables, ranked by the degree of attribute correspondence used
for the mapping used to generate the query producing that
table.

This reduces the a priori  or static effort required for
schema integration to that of multidatabase languages (query
translation to different DBMS types), while relieving the user
of providing “federated schema” knowledge when issuing the
query. Semantic integration is handled by presenting a query
result for each likely attribute correspondence. Thus the user
need only determine which of the possible results makes
sense, as opposed to determining the attribute correspon-
dence in advance.

We see three scenarios for dynamic integration, depend-
ing on the level of knowledge of attribute correspondence that

Figure 5: Faculty and Student DatabasesFigure 5: Faculty and Student DatabasesFigure 5: Faculty and Student DatabasesFigure 5: Faculty and Student DatabasesFigure 5: Faculty and Student Databases

 [ Faculty ] [ Faculty ] [ Faculty ] [ Faculty ] [ Faculty ]             [ Student ]            [ Student ]            [ Student ]            [ Student ]            [ Student ]

SS#SS#SS#SS#SS# Facu_NameFacu_NameFacu_NameFacu_NameFacu_Name SalarySalarySalarySalarySalary  Stud_ID Stud_ID Stud_ID Stud_ID Stud_ID Stud_NameStud_NameStud_NameStud_NameStud_Name StipendStipendStipendStipendStipend Tel#Tel#Tel#Tel#Tel#
493-45-8735 John $100,000 476-34-5748 Jason $11,000 674-7456
956-45-0456 Robert  $80,000 958-46-3256 Steven $0 765-0945
849-45-0500 Patricia  $60,000 485-75-2374 Patricia $0 767-5134
485-95-6784 Larry  $20,000 485-95-6784 Larry $12,000 767-0900
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a user has when issuing a query:

1.  Two databases are well understood: the attribute correspon-
dence is known;

2.  Only one database is well understood: the desired attribute
is known for one database, however the corresponding
attributes in other databases needs to be determined; and

3.  Neither database is well understood; finding the appropriate
mappings needs to be done “from scratch”. This case only
applies when either:
• The unknown quantity is a join condition for the data-
   bases; or
• The goal is to select all attributes from both databases.

In this paper, we present only the case where we are
looking for a join criteria (Global ID). This covers all three
scenarios. We briefly discuss other cases, such as aggregation
(e.g., combining salary and stipend) at the end of this section.

Query LanguageQuery LanguageQuery LanguageQuery LanguageQuery Language
Our approach works in all three scenarios, so users can

submit a multidatabase query whether or not a Global ID is
known. This requires extensions to the MSQL to allow
specifying a Global ID, or requesting that one be determined
automatically. The extensions are shown in Figure 6. The
“MULTISELECT” clause specifies which attributes to re-
trieve. The “WHERE” clause specifies what is known about
Global IDs (GIDs), and what needs to be determined. If the

GID is known in advance (the first scenario), all attributes are
specified.

Data integration and query processing when the GID is
known are as described in Litwin et al. (1989). In the second
scenario (one attributes is specified as “*”) and third scenario
(both attributes are specified as “*”), Semantic Integration
needs to be carried out to generate attribute correspondences
to be used as candidate global IDs. The clauses “WITH
SIMILARITY>threshold” and “BEST max_matches” are
optional, and are used to restrict the number of potential GID
candidates to those where Semint gives a similarity measure
greater than threshold, and if a large number meet that criteria,
only the best max_matches candidates (if these are not speci-
fied, defaults are used).

The overview of our framework architecture is shown in
Figure 7. If no global ID is provided, the multidatabase query
parser first uses the Semantic Integration process (Semint) to
attempt to find attribute correspondences (as shown in Figure
9). Semint accesses the local databases to retrieve metadata
describing the database attributes. This metadata is used to
generate attribute correspondences: A list of semantic related
attributes and their similarity (between 0 and 1). Assume that
our multidatabase integrates two local schemas, namely FAC-
ULTY (SS#, Faculty_Name, Salary) and STUDENT(Stud_ID,
Stud_Name, Stipend, Tel#), as shown in Figure 8. The at-
tribute correspondences and their similarity generated by
Semint from Faculty and Student (as shown in Figure 8) with
similarity threshold set to 0.8 are as follows:

(Faculty.SS#, Student.Stud_ID, similarity = 0.98)
(Faculty.Facu_Name, Student.Stud_Name, similarity = 0.91)
(Faculty.Salary, Student.Stipend, similarity = 0.85)

These corresponding attributes (the pairs of attributes with
high similarity) are used as candidate global IDs.

The candidate global ID’s are selected from this list. If

Figure 7: Multidatabase Query Processing with Dynamic IntegrationFigure 7: Multidatabase Query Processing with Dynamic IntegrationFigure 7: Multidatabase Query Processing with Dynamic IntegrationFigure 7: Multidatabase Query Processing with Dynamic IntegrationFigure 7: Multidatabase Query Processing with Dynamic Integration

Figure 6: Multidatabase Query Language With DynamicFigure 6: Multidatabase Query Language With DynamicFigure 6: Multidatabase Query Language With DynamicFigure 6: Multidatabase Query Language With DynamicFigure 6: Multidatabase Query Language With Dynamic
IntegrationIntegrationIntegrationIntegrationIntegration

 MULTISELECT  attribute names
 FROM  relation1 relation2 ... relationn
 WHERE   relation1.( attribute | *) = relation2.( attribute |  *)  = ...  =
        relationn.( attribute |  *) [  WITH SIMILARITY >   threshold ]
                              [  BEST   max_matches ]
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the user specifies one of the local IDs, any attributes that match
the given ID with similarity higher than the given threshold (or
a default) are used. If no local ID is given, any pair of attributes
with high enough similarity are used. This results in a collec-
tion of “scenario 1” MSQL queries, each with a different
Global ID.

Attribute correspondences are generated dynamically
before the actual multidatabase query is processed. This is
done on a demand basis: If the global ID is known (or has
previously been determined and saved in a list of attribute
correspondences) no semantic integration is needed. If the
global ID is unknown, Semint is run to find candidates. 4

The Query Processing step (Figure 10) decomposes the
global MSQL query (or queries if there are multiple candidate
GIDs) into component database subqueries and submits them
to the local databases. The subqueries are executed at the local
sites and tuples are returned to the global site.

The Data Integration step receives these returned tuples
and merges them as multiple sets of answers ranked by the
similarities in the attribute correspondence list. A set of
answers is generated for each of the candidate GIDs. Each
represents a possible answer to the query; the correct one
depends on the correct GID. These are ranked based on the
“confidence” in the correctness of the result. The degree of
confidence of a result table is based on the similarity of
attribute correspondence used as a GID. For example, the

 Figure 8: Possible Global IDs in Faculty and Student Figure 8: Possible Global IDs in Faculty and Student Figure 8: Possible Global IDs in Faculty and Student Figure 8: Possible Global IDs in Faculty and Student Figure 8: Possible Global IDs in Faculty and Student

degree of confidence of table using GID
(Faculty.SS#,Student.Stud_ID) is 0.98 since the similarity
between Faculty.SS# and Student.Stud_ID is 0.98.

Dynamic Integration and Query Processing ProceduresDynamic Integration and Query Processing ProceduresDynamic Integration and Query Processing ProceduresDynamic Integration and Query Processing ProceduresDynamic Integration and Query Processing Procedures
The procedure of dynamic integration query processing

with ranked answer sets is outlined below:

Pre-multidatabase-query process (semantic integration,
Figure 9)

Step 1: Step 1: Step 1: Step 1: Step 1: The users submit a multidatabase query to
retrieve semantically similar data items. The “WHERE” clause
specifies the type of global ID assumption.

Step 2:Step 2:Step 2:Step 2:Step 2: If the global ID is unknown, Semantic Integration
Process (Semint) at the global site extracts metadata from the
local databases.

Step 3Step 3Step 3Step 3Step 3: Semint uses the metadata extracted in Step 2 to
generate attribute correspondences as candidate GIDs accord-
ing to the (user-specified or default) similarity threshold.5

Multidatabase Query Processing (Figure 10)

Step 4:Step 4:Step 4:Step 4:Step 4: Multidatabase Query Processing re-formulates
the original multidatabase query into multiple multidatabase
queries according to attribute correspondences. One

Figure 9: Pre-Multidatabase-Query Processing: Semantic IntegrationFigure 9: Pre-Multidatabase-Query Processing: Semantic IntegrationFigure 9: Pre-Multidatabase-Query Processing: Semantic IntegrationFigure 9: Pre-Multidatabase-Query Processing: Semantic IntegrationFigure 9: Pre-Multidatabase-Query Processing: Semantic Integration
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Figure 11: Faculty and Student DatabasesFigure 11: Faculty and Student DatabasesFigure 11: Faculty and Student DatabasesFigure 11: Faculty and Student DatabasesFigure 11: Faculty and Student Databases

  [ Faculty ][ Faculty ][ Faculty ][ Faculty ][ Faculty ]  [ Student ] [ Student ] [ Student ] [ Student ] [ Student ]

 SS# SS# SS# SS# SS# Facu_NameFacu_NameFacu_NameFacu_NameFacu_Name SalarySalarySalarySalarySalary Stud_IDStud_IDStud_IDStud_IDStud_ID Stud_NameStud_NameStud_NameStud_NameStud_Name StipendStipendStipendStipendStipend Tel#Tel#Tel#Tel#Tel#
 493-45-8735 John $100,000 476-34-5748 Jason $11,000 674-7456
956-45-0456 Robert $80,000 958-46-3256 Steven $0 765-0945
849-45-0500 Patricia $60,000 485-75-2374 Patricia $0 767-5134
485-95-6784 Larry $20,000 485-95-6784 Larry $12,000 767-0900

multidatabase query is generated for each candidate GID from
the attribute correspondences list. 6

Step 5: Step 5: Step 5: Step 5: Step 5: The multidatabase query pre-compiler generates
subqueries for each multidatabase query generated in Step 4
and then submits subqueries to the local databases.

 Step 6:  Step 6:  Step 6:  Step 6:  Step 6: The local databases return the result tuples of the
subqueries to the originating site.

Step 7: Step 7: Step 7: Step 7: Step 7: The Data Integration process merges the interme-
diate results from various sites by consulting the attribute
correspondence list. The results are presented to the users as
tables with degrees of confidence (ranked result sets). One set
of results is generated for each pair of corresponding at-
tributes.

Note: Steps 2 and 3 only need to be done once, and can
be done in anticipation of possible queries to improve query
response time. Extending Semint to identify “compound
keys” and multiple query optimization issues are left for
future research.

Example ScenarioExample ScenarioExample ScenarioExample ScenarioExample Scenario
  In this section, we use some sample queries to demon-

strate the dynamic integration and query processing of our
approach. Imagine that we are planning a university budget.
We want to know:

What are the salaries of student instructors?
The salary of a student instructor may come from two

sources: Faculty salary from the University and student sti-
pend from the Graduate School. The faculty salary informa-
tion is stored in the Faculty database and student stipend
information is stored in the Student database, as shown in
Figure 11. Here we only list relevant attributes for ease of
illustration.

As we discussed in Section 5, we see three scenarios
based on database knowledge: Two databases are well under-
stood so that a global ID is known, only one database is well
understood (a local ID is known, but the corresponding ID
needs to be determined by semantic integration), and neither
database is well understood (global IDs need to be determined
by semantic integration).

Global ID is Known. Global ID is Known. Global ID is Known. Global ID is Known. Global ID is Known. In the first scenario, the user knows
that Faculty.SS# and Student.Stud_ID form a valid global
identifier. The query can be posed as:

MULTISELECT *
FROM Faculty, Student
WHERE (Faculty.SS# = Student.Stud_ID)

The result of this query is shown in Figure 12. In this
case, the semantic integration is static (done in advance) so the
GID is known.

      ID is known for Faculty Database. ID is known for Faculty Database. ID is known for Faculty Database. ID is known for Faculty Database. ID is known for Faculty Database. In this section we
discuss how our approach works in the second scenario: Only
one database is well understood. A local ID is known for this

Figure 10: Multidatabase Query ProcessingFigure 10: Multidatabase Query ProcessingFigure 10: Multidatabase Query ProcessingFigure 10: Multidatabase Query ProcessingFigure 10: Multidatabase Query Processing
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database; however, the global ID needs to be determined by
semantic integration. We know we need to access the Faculty
and Student databases. We are familiar with Faculty; however,
we have little knowledge about Student. We know the two
databases should contain some similar data items such as
salary, social security number, and name. We can submit the
follow multidatabase query to retrieve the salaries of student
instructors using Faculty.SS# as part of the global ID. Because
the Student database is not well understood, we specify the
corresponding attribute in Student as “*”. Semint will then
determine the possible corresponding attributes in Student to
use with Faculty.SS# as the GID. The query follows:

MULTISELECT *
FROM Faculty, Student
WHERE  Faculty.SS# = Student.*
WITH SIMILARITY > 0.8

The clause “where Faculty.SS# = Student.*” causes the
Semantic Integration Process to find candidate corresponding
attributes in the Student database, to be combined with
Faculty.SS# as a global ID. The clause “WITH SIMILARITY
>0.8” restricts candidate attributes to those that have a degree
of similarity greater than 0.8. The query is processed in the
following steps:

Step 1:Step 1:Step 1:Step 1:Step 1: Semantic Integration. Semint recommends the
attribute correspondence as:

        (Faculty.SS#, Student.Stud_ID, similarity = 0.98)
Step 2:Step 2:Step 2:Step 2:Step 2: Query Re-formulation. The “*” is replaced by the

corresponding attribute (Student.Stud_ID) found in the previ-
ous step. However, if multiple corresponding attributes are
recommended by Semint, one multidatabase query is gener-
ated for each corresponding attribute.

MULTISELECT *
FROM Faculty, Student
WHERE Faculty.SS# = Student.Stud_ID
Step 3:Step 3:Step 3:Step 3:Step 3: Multidatabase Query Processing. The

Multidatabase query is translated into subqueries that are
submitted to the component databases. The subqueries are
executed at the component databases and the resulting tuples
are returned to the originating site. Step 4: Data Integration
with Ranked Result Sets. Because Semint only recommends
one candidate GID, only one set of results is presented to the
user. The result is shown in Figure 12.

Nothing is known about the Global ID.Nothing is known about the Global ID.Nothing is known about the Global ID.Nothing is known about the Global ID.Nothing is known about the Global ID. The query in the
previous section would not give a correct result if there were
no attribute in Student corresponding to Faculty.SS#. Other
attributes, such as Name, may also work as a global ID.

Therefore, we release the constraint that Faculty.SS# be part
of the global ID. Instead, we let the system recommend
candidate global IDs. The query is shown below:

MULTISELECT *
FROM Faculty, Student
WHERE Faculty.* = Student.*
WITH SIMILARITY > 0.8
The clause “WHERE Faculty.* = Student.*” specifies

that the Semantic Integration Process should use any pair of
corresponding attributes as candidate global IDs. Note that no
similarity threshold clause is specified, so a default is used to
restrict the candidates. The query is processed in the follow-
ing steps:

Step 1:Step 1:Step 1:Step 1:Step 1: Semantic Integration. Semint recommends the
following attribute correspondences:

(Faculty.SS#, Student.Stud_ID, similarity = 0.98)
(Faculty.Facu_Name, Student.Stud_Name, similarity = 0.91)
(Faculty.Salary, Student.Stipend, similarity = 0.85)

Step 2: Step 2: Step 2: Step 2: Step 2: Query Re-formulation. The “*”s are replaced by
the attribute correspondences generated in the Step 1. Semint
recommends three pairs of corresponding attributes; there-
fore, three multidatabase queries are generated as follows:

MULTISELECT *
FROM Faculty, Student
WHERE Faculty.SS# = Student.Stud_ID

MULTISELECT *
FROM Faculty, Student
WHERE Faculty.Facu_Name = Student.Stud_Name

MULTISELECT *
FROM Faculty, Student
WHERE Faculty.Salary = Student.Stipend

Step 3:Step 3:Step 3:Step 3:Step 3: Multidatabase Query Processing. These three
multidatabase queries are translated into subqueries and submit-
ted to the component databases. The component databases
process these subqueries and return the results to the originating
site.

 Step 4:Step 4:Step 4:Step 4:Step 4: Data Integration. The Data Integration Process
then merges the corresponding subquery results into inte-
grated results for those originating queries using GID
(Faculty.SS#, Student.Stud_ID), GID (Faculty.Facu_Name,
Student.Stud_Name), and GID (Faculty.Salary,
Student.Stipend). The results of these three queries are shown

(SS#=Stud_ID)(SS#=Stud_ID)(SS#=Stud_ID)(SS#=Stud_ID)(SS#=Stud_ID) Facu_NameFacu_NameFacu_NameFacu_NameFacu_Name SalarySalarySalarySalarySalary Stud_NameStud_NameStud_NameStud_NameStud_Name StipendStipendStipendStipendStipend Tel#Tel#Tel#Tel#Tel#
 485-95-6784      Larry  $20,000      Larry                 $12,000             767-0900

Figure 12: Result using (SS#,Stud_ID) as GID with Degree of Confidence = 0.98Figure 12: Result using (SS#,Stud_ID) as GID with Degree of Confidence = 0.98Figure 12: Result using (SS#,Stud_ID) as GID with Degree of Confidence = 0.98Figure 12: Result using (SS#,Stud_ID) as GID with Degree of Confidence = 0.98Figure 12: Result using (SS#,Stud_ID) as GID with Degree of Confidence = 0.98
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(Facu_Name=Stud_Name)(Facu_Name=Stud_Name)(Facu_Name=Stud_Name)(Facu_Name=Stud_Name)(Facu_Name=Stud_Name)  Stud_ID Stud_ID Stud_ID Stud_ID Stud_ID StipendStipendStipendStipendStipend  SS# SS# SS# SS# SS#  Salary Salary Salary Salary Salary Tel#Tel#Tel#Tel#Tel#
Larry  485-95-6784 $20,000 485-95-6784 $12,000 767-0900
Patricia  849-45-0500 $60,000  485-75-2374  $0 767-5134

Figure 13: Result using (Facu_Name,Stud_Name) as GID with Degree of Confidence = 0.91Figure 13: Result using (Facu_Name,Stud_Name) as GID with Degree of Confidence = 0.91Figure 13: Result using (Facu_Name,Stud_Name) as GID with Degree of Confidence = 0.91Figure 13: Result using (Facu_Name,Stud_Name) as GID with Degree of Confidence = 0.91Figure 13: Result using (Facu_Name,Stud_Name) as GID with Degree of Confidence = 0.91

(Salary=Stipend)(Salary=Stipend)(Salary=Stipend)(Salary=Stipend)(Salary=Stipend)  SS# SS# SS# SS# SS#  Facu_Name Stud_ID Facu_Name Stud_ID Facu_Name Stud_ID Facu_Name Stud_ID Facu_Name Stud_ID Stud_NameStud_NameStud_NameStud_NameStud_Name Tel#Tel#Tel#Tel#Tel#

Figure 14: Result using (Salary,Stipend) as GID with Degree of Confidence = 0.85Figure 14: Result using (Salary,Stipend) as GID with Degree of Confidence = 0.85Figure 14: Result using (Salary,Stipend) as GID with Degree of Confidence = 0.85Figure 14: Result using (Salary,Stipend) as GID with Degree of Confidence = 0.85Figure 14: Result using (Salary,Stipend) as GID with Degree of Confidence = 0.85

in Figures 12-14 respectively.
Step 5:Step 5:Step 5:Step 5:Step 5: Data Integration with Ranked Result Sets. The

integrated query results using three candidate GIDs, three
tables, are then presented to the user as “ranked result sets”.
The degree of confidence of a result table is based on the
similarity of corresponding attributes used as GID.

In this example, the Data Integration Process generates
three sets of results that comprise the possible answers to the
above query: Result of using (SS#,Stud_ID) as GID with
Confidence = 0.98, result using (Facu_Name,Stud_Name) as
GID with Confidence = 0.91, and result using (Salary,Stipend)
as GID with Confidence = 0.85. Only at this point does the user
need to perform “schema integration”, by deciding which of
the results is correct. If we know that there are some student
instructors, we can see that the result using Salary and Stipend
as the global ID is clearly incorrect, as there are no tuples in the
Faculty/Student result table.

Choosing between (Facu_Name,Stud_Name) and
(SS#,Stud_ID) is more difficult, as we have a similar result
for both. However, using outside knowledge (such as student-
instructors receive a much lower salary than Faculty, or after
seeing Student ID we realize it is the same as social security
number), we could surmise that Patricia is probably not a
student-instructor. Therefore (SS#,Stud_ID) is a more likely
global ID (the fact that this gives only tuples where BOTH the
name and ID are the same supports this conjecture). Thus, the
user is able to use additional information to resolve heteroge-
neity, information that was not available before the query was
issued.

Correspondences other than join criteriaCorrespondences other than join criteriaCorrespondences other than join criteriaCorrespondences other than join criteriaCorrespondences other than join criteria
  There are attribute correspondences other than Global

IDs, such as aggregation, union, and intersection. These result
in the additional problem of data integration: How do we
combine different attributes into a single value (do we add
them, average them, choose one as correct, or something
else)? There are a number of approaches to this problem,
described earlier. Each of these approaches leads to differ-
ences in how to specify queries (and thus in the query lan-
guage), therefore we do not specify yet another query lan-
guage for these cases. The dynamic schema integration pro-
cess presented here can incorporate any of the dynamic data
integration methods referenced.

We will give an example, however. If we assume an
explicit aggregation technique, we could specify a query
selecting total income of Faculty and Students as follows:

MULTISELECT Faculty.Salary+Student.*
FROM Faculty, Student
WHERE  Faculty.SS# = Student.*
WITH SIMILARITY > 0.8
This would generate tables showing each possible match

for Faculty salary, for each possible match for Faculty SS#.
Although this gives a potentially large number of potential
tables (the product of the number of matches for each unspeci-
fied attribute), the required effort of choosing which of the
tables is correct (given that most will be empty or have
obviously nonsensical results) is substantially less than manu-
ally determining the correct attribute correspondence in ad-
vance.

ConclusionsConclusionsConclusionsConclusionsConclusions

In this paper we argue that attribute correspondence
identification is the bottleneck of multidatabase dynamic
integration and query processing. We have presented the
theoretical background and design of Semint. We show how
Semint can automatically extract metadata from databases in
different DBMSs and determine attribute correspondences
among databases. Semint uses only information that can be
automatically extracted from a database. One novel feature is
that how this metadata characterizes attribute semantics is
learned, not pre-programmed. This allows Semint to auto-
matically develop different “solutions” for different data-
bases. The means of performing semantic integration is cus-
tomized to the domain of the databases being integrated. This
is done without human (or other outside) intervention; the
“domain knowledge” is learned directly from the database.
This enables us to find attribute correspondences between
databases without providing any advance domain knowledge;
rather than substantial a priori effort to codify domain knowl-
edge, users need only use their domain knowledge to verify the
recommendations of Semint.

We then demonstrated how Semint can be part of
semiautomated integration in assisting DBAs in constructing
attribute correspondences. We have used an example to dem-
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onstrate the procedure. However, with Semint, we can go
beyond this to perform dynamic integration: Determining the
mappings that combine information from different databases
after the query is issued. We have presented a method that uses
ranked result sets to present query results to the user based on
likely attribute correspondences between the databases. The
user is still responsible for final determination of the correct
mapping (a task requiring domain knowledge); but additional
information, the query results and the ranking of these results,
is provided to ease this task. Often the correct choice of
attribute correspondence and means of mapping data will be
obvious once the results are shown.

Note that other highly automated attribute correspon-
dence techniques, such as [Housman, 1994], can be used in
this same dynamic integration framework (or better still, the
results from such tools can be combined) with those from
Semint). We are currently working on this. A variety of data
integration methods can also be incorporated in this frame-
work. We are investigating using role sets (Scheuermann and
Chong, 1994) to develop a complete dynamic integration
system.
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EndnotesEndnotesEndnotesEndnotesEndnotes
1 This material is based upon work supported by the National Science

Foundation under Grant No. CCR-9210704.
2 The views and opinions in this paper are those of the author and do

not reflect MITRE’s work position.
3 However, users can still submit a multidatabase query to join Faculty

and Student.
4 This does not require retraining the network, only using the existing

network. The parsing, classification, and training steps can be done in advance
on a per-database basis without knowing what databases might be integrated
with in the future; the only run-time processing is using an already trained
network. This is a sub-second process, and will not noticeably affect response
time).

5 With more than two attributes, candidate GIDs are those that are
similar among all the databases.

6 For the Faculty and Student candidate keys in the example of Figure
8, three queries are generated.
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