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In the past few years, object–oriented (O–O) conceptual
data modeling has emerged as an alternative to the traditional
technique of entity–relationship modeling.  O–O modeling is
based on the premise that the resulting models are easier to
use and understand.  However, most claims of O–O modeling
superiority are not empirically verified.  Previous studies in
this area have focused on a database modeler’s ability to
create conceptual data models from a written description, but
the concept of understanding a completed data model by a
database designer has not been investigated.  Thus, this study
explores a database designer’s ability to understand an O–O
conceptual data model – the Object Modeling Technique
(OMT) – compared to an E–R model – the extended–entity–
relationship model (EER).  The OMT and EER conceptual
data modeling techniques are compared using three modeling
performance criteria:  (1) model understanding; (2) time to
understand; and (3) perceived ease–of–use.  Results of this
study indicate that the only difference between the two tech-
niques is in the time to understand – OMT is significantly
faster for both simple and complex problems.

The field of object–oriented (O–O) technology is grow-
ing rapidly.  From a $200 million market in 1990, the O–O
market is expected to hit $3.5 billion in a few short years
(Khoshafian, 1993).  Spanning research and practice from
programming languages to systems analysis and design to
database systems, almost all areas of systems development
have been touched by the concepts of O–O.  Although research
continues to develop new areas within O–O, many recent
efforts are aimed at testing and evaluating the fledgling tech-
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nologies.
One of the newest areas (circa, mid–1980’s) within O–

O is the concept of O–O databases (Khoshafian, 1993).  Most
fields of database management – from the development of new
forms of databases to new methods of data modeling – are
feeling the influence of O–O.  In particular, the growing
interest in O–O has spawned the growth of several O–O
conceptual data models.  It is believed that O–O conceptual
data models, compared to other conceptual data models (e.g.,
the entity–relationship model), more closely represent reality
and, consequently, provide a higher degree of modeling cor-
rectness and understanding (Bock and Ryan, 1993).

However, most claims of O–O modeling superiority are
not empirically verified.  Additionally, previous studies in this
area have focused on a database modeler’s ability to create
models from a written description (i.e., model correctness),
but the concept of understanding a completed data model by
a database designer has not been investigated.  Thus, the
purpose of this study is to empirically compare an O–O
conceptual modeling technique to a more traditional tech-
nique based on the entity–relationship (E–R) model.  Specifi-
cally, this study investigates an entry–level database
designer’s ability to understand an O–O conceptual data
model, compared to an E–R model.

Background and Related ResearchBackground and Related ResearchBackground and Related ResearchBackground and Related ResearchBackground and Related Research

In database design, a primary criterion for evaluating a
design is understandability (Blaha, et al., 1988):  can end–
users, database designers, and original modelers understand
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tween the two methods.
Other studies have compared various forms of concep-

tual models.  Using a problem description as the task and end–
users for subjects, Sheng and Higa (1990) compared the
Structured Object Model (SOM), EER, and the normalization
technique.  The criteria for evaluation was design accuracy,
design speed, and learning speed.  Their results indicated that
the graph based methods (SOM and EER) provided greater
design accuracy and were easier to learn.  A recent study by
Bock and Ryan (1993) compared modeling correctness be-
tween the EER model and Kroenke’s O–O model.  Entry–level
IS professionals created conceptual data models from a writ-
ten description (the same description used in Batra, et al.’s
(1990) study).  EER was significantly better on three of the
eight constructs used to measure model correctness.

Noticeably absent from this sampling of related research
is research which investigates the understanding of the con-
ceptual data model after it has been created (i.e., communica-
tion between database professionals).  Thus, the focus of this
study:  a comparison of two conceptual models (O–O and E–
R) with regard to a database designer’s ability to understand
the models.

Research ModelResearch ModelResearch ModelResearch ModelResearch Model

The research model used to guide this study is shown in
Figure 1.  Originally proposed by Jenkins (1982), the model
has been modified to accommodate the study of data modeling
performance (Batra, et al., 1990; Bock and Ryan, 1993).  As
seen in Figure 1, the focus of this study is on the data model’s
impact on performance (i.e., the data model is the independent
variable of interest).  The human and task variables are
controlled.

Data ModelsData ModelsData ModelsData ModelsData Models
Many different data models exist for both EER and O–

O modeling.  Thus, specific models from each of these

the structure of the database?  The conceptual data model
serves as the bridge between users and database professionals;
thus, the ability to understand the data model1, by each party,
is particularly important.  The ultimate success of the project
is dependent on the accuracy of the data model (Jarvenpaa and
Machesky, 1989).

It is during the translation of requirements from user to
database modeler that many errors occur.  Often forgotten,
however, are the errors that occur in communication among
database professionals via the data model.  Potential problems
occur because the conceptual data modelers may not be
responsible for implementing the design; thus, the designers
of the implementable data model must be able to read and
understand the conceptual data model.  And, because the data
model is often used as part of the system documentation, the
data model should be clear and understandable to designers
that may need the model later (Campbell, 1992).

Related ResearchRelated ResearchRelated ResearchRelated ResearchRelated Research
To this point, prior research has primarily investigated a

data modeler’s or end–user’s ability to develop a conceptual or
implementable data model from a written problem descrip-
tion. A sample of these articles is discussed next.

Several studies have compared a conceptual data model
to an implementable data model.  A study by Jih, et al., (1989)
compared E–R and relational data models by looking at an
end–user’s query writing ability as measured by syntax errors,
semantic errors, and time needed to write the query.  No
significant differences were found between the two tech-
niques.  Batra, et al., (1990), compared the extended–entity–
relationship (EER) and relational models in the areas of
modeling correctness and ease–of–use.  For the experiment,
end–users were asked to create models from a problem de-
scription.  Results indicated that EER was significantly better
on three of the six constructs used to measure modeling
correctness.  Ease–of–use was not significantly different be-

Figure 1: Research ModelFigure 1: Research ModelFigure 1: Research ModelFigure 1: Research ModelFigure 1: Research Model
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domains had to be selected.  To represent EER models, the
technique as described by McFadden and Hoffer (1991) is
used.  The Object Modeling Technique (OMT) was chosen to
represent the O–O paradigm (Rumbaugh, et al., 1991).  Al-
though both EER and OMT are considered semantic data
models, they are very different.

The E–R approach, initially proposed by Chen (1976),
represents the most common basis for conceptual design
(Teorey, et al., 1986).  In E–R models, the system is repre-
sented by entities, entity attributes, and relationships among
the entities.  Unfortunately, these simple constructs were not
sufficient to model complex real–world situations, specifi-
cally generalization/specialization and aggregation.  Due to
these shortcomings, the original E–R has been modified and
extended to produce what is now known as the extended–
entity–relationship model.  The EER model is now the ac-
cepted standard for relational database design (Batra, et al.,
1990; McFadden and Hoffer, 1991).  The EER technique as
described in McFadden and Hoffer’s book is similar to most
EER techniques in syntax and semantics, and has been used in
other studies of this type (e.g., Bock and Ryan, 1993).

The OMT is representative of the emerging O–O tech-
niques of data modeling.  OMT is a well–known, comprehen-
sive, methodology that builds upon earlier object–oriented
work, and includes modeling, analysis, design, and program-
ming.  According to Eckert and Golder (1994), OMT is “an
enhanced form of E–R approach adding new concepts and
constructs.”  OMT is said to improve upon the E–R modeling
technique in the areas of expressiveness and readability which
are key components of understandability (Blaha, et al., 1988).
Compared to other leading object–oriented approaches, such
as Coad and Yourdon’s OOA and OOD methods, OMT
provides many more constructs and defines the constructs
more precisely (Eckert and Golder, 1994).  According to the
creators of OMT (Blaha, et al., 1988), OMT offers the advan-
tages of ease of use, ease of understanding, and intuitive
richness.

TaskTaskTaskTaskTask
Findings from related research in data modeling have

indicated that task complexity is an important variable to
consider in evaluating data models (Bock and Ryan, 1993;
Brosey and Shneiderman, 1978; Jih, et al., 1989; Sheng and
Higa, 1990).  Also, proponents of O–O methods contend that
O–O is most appropriate for complex problems (Blaha, et al.,
1988).  Thus, for this study, two tasks will be used: a ‘simple’
task and a ‘complex’ task.  Task is controlled across data
model types for a given task level (i.e., a simple problem
situation is modeled using EER and OMT, and a complex
problem situation is modeled using EER and OMT).

Modeling PerformanceModeling PerformanceModeling PerformanceModeling PerformanceModeling Performance
Modeling performance is determined by (1) model un-

derstanding, (2) understanding time, and (3) perceived ease–

of–use.  ‘Model understanding’ describes the degree of under-
standing by a subject, and is measured on two levels:  facets
and overall.  Facets, such as entities, relationships, and at-
tributes, are defined as the constructs which comprise a data
model (Batra, et al., 1990).  The facets used in this study
include:  (1) binary relationships (i.e., a relationship involving
two entities or classes); (2) ternary relationships (i.e., a rela-
tionship involving three entities or classes); (3) unary relation-
ships (i.e., a relationship involving only one entity or class);
(4) categories (i.e., class/subclass, generalization/specializa-
tion); and (5) descriptors (i.e., attributes).  Previous studies by
Batra, et al., (1990) and Bock and Ryan (1993) have used
facets as measures of modeling performance.  Facets appear to
be a proper construct for measuring understanding.  Therefore,
Hypothesis 1, stated in the null form, is:

H1H1H1H1H1:There are no differences in understanding between the
EER and the OMT conceptual data models with respect
to:

H1a: unary relationships;
H1b: binary relationships;
H1c: ternary relationships;
H1d: categories;
H1e: descriptors;

when testing subjects who have had a very brief
exposure to each of the models.

In addition to the individual facets, it is important to
measure the overall understanding of the model.  Although,
Batra, et al., (1990) feel that an overall measure is not neces-
sary or proper, we believe a designer must develop an under-
standing of the complete model, in addition to the more
detailed facets.  Overall scores, representing performance for
data modeling, have been used in prior studies (e.g., Jih, et al.,
1989).  Thus, Hypothesis 2, stated in the null form, is:

H2:H2:H2:H2:H2:There is no difference in overall understanding between
the EER and the OMT conceptual data models when
testing subjects who have had a very brief exposure to
each of the models.

Another measure of modeling performance is time
(Jarvenpaa and Machesky, 1989; Jih, et al., 1989; Shoval and
Even–Chaime, 1987):  how long does it take to understand the
model?  Although time and performance are usually consid-
ered a tradeoff, previous studies have shown that this is not
necessarily always true (Jarvenpaa and Machesky, 1989).  For
this study, the time needed to understand the model is a logical
measure of modeling performance.  Stated in the null form,
Hypothesis 3 is:

H3:H3:H3:H3:H3:There is no difference in understanding time between the
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EER and the OMT conceptual data models when testing
subjects who have had a very brief exposure to each of the
models.

The final measure of performance is perceived ease–of–
use.  Perceived ease–of–use is defined as the “degree to which
a person believes that using a particular system would be free
of effort” (Davis, 1989, p. 320).  In the context of data
modeling, ease–of–use indicates the degree of effort needed to
use the data model (Batra, et al., 1990).  Models that require
less mental effort (i.e., easier–to–use) are considered better
performers (Batra, et al., 1990).  Hypothesis 4, stated in null
form, is:

H4:H4:H4:H4:H4: There is no difference in perceived ease–of–use between
the EER and the OMT modeling techniques when testing
subjects who have had a very brief exposure to each of the
models.

Research MethodologyResearch MethodologyResearch MethodologyResearch MethodologyResearch Methodology

Experimental DesignExperimental DesignExperimental DesignExperimental DesignExperimental Design
A lab experiment, using a between–subjects post–test–

only design, is used to compare the two data modeling tech-
niques at different levels of task difficulty.  The two factors
(i.e., the independent variables) are:

1. The type of data model:  EER and OMT
2. Task complexity:  simple and complex

Task complexity is operationalized as follows.  A simple
task contains entities, descriptors, and binary relationships.
The complex task contains all of the characteristics of a simple
task, plus unary relationships, ternary relationships, and cat-
egories.

The facets used to determine simple or complex were
determined by previous studies.  Unary relationships and
ternary relationships are included in the complex task because
they have been shown to be difficult to model and understand
(Batra, et al., 1990; Bock and Ryan, 1993; Sheng and Higa,
1990).  Category, a concept added to the original E–R tech-
nique, is also included in the complex task.  Entities, descrip-
tors, and binary relationships, on the other hand, are very
common and appear in almost all real–world conceptual
models, thus forming the basis for the simple task.

SubjectsSubjectsSubjectsSubjectsSubjects
The sample for this study consists of 56 students enrolled

in a course in Database Management Systems at a major
midwest university.  Most of the students were seniors in their
last year or semester of coursework, thus serving as surrogates
for entry–level IS professionals.  Subjects participated as part

of the normal coursework for the semester.
Subjects were randomly assigned to one of the four

groups (simple OMT, complex OMT, simple EER, complex
EER).  Because the variance in human characteristics is a
threat to valid inference, the human variable is ‘controlled’ by
measuring the potential threat, then using the measures in the
data analysis to rule out the threat (Cook and Campbell, 1979).
In this particular study, it is desired that subjects have no prior
knowledge of the models other than that gained in the database
class, and that each of the four groups have equivalent back-
grounds.  A questionnaire was used to measure the subjects’
backgrounds; it was not used to assign the subjects to the
groups.  Data analysis revealed no significant differences
between the four groups due to subject background.

ProcedureProcedureProcedureProcedureProcedure
The subjects were provided two one–hour lectures on

each of the models.  The content of the lecture material was
designed to be functionally equivalent.  To alleviate any
novelty effects, subjects were given a homework assignment
similar in form to the experimental task, prior to the testing
session.

For the testing session, subjects were randomly assigned
to one of the four groups and presented with a data model
(OMT or EER) for a particular task level (simple or complex).
The subjects were asked to examine the model and then
answer multiple–choice questions that tested his/her under-
standing of the data model.  The time needed to complete the
questions was also noted.

The task variable is controlled by using the same or
similar teaching methods to present the models to the subjects,
by using equivalent models across modeling techniques for a
given level of complexity, and by regulating the amount of
time and materials used to teach the subjects.

Dependent VariablesDependent VariablesDependent VariablesDependent VariablesDependent Variables
Performance, the dependent variable for this study, is

indicated by model understanding, understanding time, and
perceived ease–of–use.  To measure model understanding, an
objective instrument is used.  The simple task consists of five
multiple–choice questions; the complex task has ten multiple–
choice questions.  All subjects solving the simple task received
the same five questions, but half the subjects used an OMT
model, the other half used an EER model.  The same method
was used for the complex task.  Each multiple choice question
is designed to measure the understanding of a particular facet.
Responses are scored as either correct or incorrect (no partial
scores).  The facets measured are, for the simple task:  binary
one–many and binary many–many, and a descriptor (in this
case, a link attribute on a binary many–many relationship).
For the complex task, the facets are:  unary one–many, binary
one–many, ternary one–many–many, categories, and descrip-
tors (one descriptor is for an entity/class involved in the
ternary relationship, and one descriptor is a link attribute on a
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ternary relationship).  The sum of the correct answers is an
indicator of overall understanding.

Understanding time is operationalized as the total time
taken to answer the objective questions.  Subjects were asked
to indicate the starting time when they began the task, and the
ending time when they finished the task.  Times were verified
by the experimenters when the subjects presented the com-
pleted tasks.

The instrument used to indicate perceived ease–of–use
is adopted from Davis (1989) and Batra, et al., (1990).  Each
technique, OMT and EER, had an associated ease–of–use
questionnaire.

Results and InterpretationsResults and InterpretationsResults and InterpretationsResults and InterpretationsResults and Interpretations

Model Understanding – FacetsModel Understanding – FacetsModel Understanding – FacetsModel Understanding – FacetsModel Understanding – Facets
A comparison of ‘facet understanding’ between EER

and OMT is shown in Table 1.  For the complex problem, there
are no significant differences between EER and OMT with
respect to the five individual facets.  The same is true of the two
facets for the simple problem.  Although one may infer
differences based upon mean scores alone, a conclusion that a
difference exists cannot be reached due to a lack of statistical
significance.  Thus, Hypothesis 1, which states that there are
no differences in understanding between the EER and OMT
data models with respect to the five different facets, cannot be
rejected.

It is interesting to note that the level of understanding of
ternary relationships is consistent with the ability to accurately
create ternary relationships.  Findings in this study indicate a
mean percentage correct of 46 percent for both EER and OMT.
Subjects in the Batra, et al., (1990) study accurately modeled
the ternary one–many–many relationship (using EER) 41
percent of the time.  In Bock and Ryan’s (1993) study, subjects
scored 47 percent for EER and 44 percent for Kroenke’s O–O
model in modeling a ternary one–many–many relationship.

Another interesting result is the extremely low scores
associated with the descriptors for the complex problem.  As
described earlier, the descriptors for the complex problem
consist of an attribute of an entity/class involved in a ternary
relationship and a link attribute of a ternary relationship.  The
low understanding of the descriptors for the complex problem
seem to be compounded by the ternary relationship, which has
proven to be difficult to understand.

 Model Understanding – OverallModel Understanding – OverallModel Understanding – OverallModel Understanding – OverallModel Understanding – Overall
Since no significant differences are found at the facet

level, it is suspected that the overall score will not show
differences.  The (partial) ANOVA table (Table 2) is used to
indicate significant differences (variation) in the dependent
variable (in this case, total score) due to the task, the data
model, or the interaction of the task and the data model.  The
values of interest are highlighted in Table 2.  No significant
differences are found due to the data model used (TECH;
significance level = 0.9300) or the interaction of the data
model and task (TECH*TASK; significance level = 0.5014).
As expected, the scores between the simple and complex tasks
are significantly different (TASK; significance level =
0.0001).  Thus, Hypothesis 2, which states that there will be no
difference in overall understanding due to the data model,
cannot be rejected.

Understanding TimeUnderstanding TimeUnderstanding TimeUnderstanding TimeUnderstanding Time
Hypothesis 3 suggests that there is no difference in

understanding time due to the data model.  As shown in the
(partial) ANOVA table (Table 3), Hypothesis 4 is rejected.
Table 3 shows the effects of the data model, the task, and the
interaction of the task and the data model on the time it takes
to complete the task.  A significant difference (significance
level=0.0013) exists between the data models (TECH) in the
time it takes to understand (i.e., answer the questions).  There
is no significant difference in understanding time due to the
interaction of task and data model (TASK*TECH; signifi-
cance level=0.9950).  As expected, it took significantly longer
to perform the complex task than the simple task (TASK;
significance level=0.0001).

        Means (% correct)        Means (% correct)        Means (% correct)        Means (% correct)        Means (% correct)
Facets                           EER             OMT        p–valueFacets                           EER             OMT        p–valueFacets                           EER             OMT        p–valueFacets                           EER             OMT        p–valueFacets                           EER             OMT        p–value

Unary (complex)  78.50% 65.35% 0.4030

Binary (complex) 75.00% 65.35% 0.4433

Binary (simple)  83.93%  85.00% 0.9011

Ternary (complex)  46.43%   46.15% 0.9767

Categories (complex) 75.00%  65.35%  0.4826

Descriptors (complex)25.00%  42.30%  0.1063

Descriptors (simple)   64.29%  80.00%  0.3620

Table 1: Comparison of Model Understanding (Facets)Table 1: Comparison of Model Understanding (Facets)Table 1: Comparison of Model Understanding (Facets)Table 1: Comparison of Model Understanding (Facets)Table 1: Comparison of Model Understanding (Facets) Table 2: ANOVA Showing the Effects of Task andTable 2: ANOVA Showing the Effects of Task andTable 2: ANOVA Showing the Effects of Task andTable 2: ANOVA Showing the Effects of Task andTable 2: ANOVA Showing the Effects of Task and
Technique on TOTAL SCORETechnique on TOTAL SCORETechnique on TOTAL SCORETechnique on TOTAL SCORETechnique on TOTAL SCORE

Dependent Variable:  TOTAL SCOREDependent Variable:  TOTAL SCOREDependent Variable:  TOTAL SCOREDependent Variable:  TOTAL SCOREDependent Variable:  TOTAL SCORE

SourceSourceSourceSourceSource DF   Type III SSDF   Type III SSDF   Type III SSDF   Type III SSDF   Type III SS F–ValueF–ValueF–ValueF–ValueF–Value  Pr > F Pr > F Pr > F Pr > F Pr > F

TASKTASKTASKTASKTASK 1  77.37   20.28 0.00010.00010.00010.00010.0001

TECHTECHTECHTECHTECH 1   0.03    0.01 0.93000.93000.93000.93000.9300

TASK*TECHTASK*TECHTASK*TECHTASK*TECHTASK*TECH  1  1.75    0.46 0.50140.50140.50140.50140.5014
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measure ease–of–use for OMT demonstrated a reliability of
0.88; the reliability for the EER ease–of–use instrument was
0.93.  Both scores indicate that the instruments have high
reliability.

DiscussionDiscussionDiscussionDiscussionDiscussion

Overall, significant differences were not found between
EER and OMT with respect to model understanding or per-
ceived ease–of–use.  The lack of findings disputes many of the
contentions in the literature that O–O models provide an easier
to use and easier to understand environment.  Similarly,
suggestions that O–O would provide better results for com-
plex problems are also not proven in this study.

The one significant finding is that OMT is faster to use
and understand than EER.  This follows the literature that
suggests O–O is more “natural” and thus can be compre-
hended faster (Booch, 1991).  The most plausible explanation
for this finding is that, according to Bruegge, et al., (1992),
OMT is a “highly expressive tool” (p. 374).  OMT uses fewer
symbols than EER, but the symbols contain more meaning.
Thus, the resulting data models are less cluttered and daunting
to the model user and are quicker to comprehend.  McGee
(1976) calls this attribute (of a data model) “elegance,” which
means the data model “achieves a given level of modeling
capability with the smallest number of structure types, compo-
sition rules, and attributes” (p. 374).  Although OMT did not
prove better for understanding scores, the faster times (with-
out loss ofperformance) can result in increased productivity
for database designers.

Needed ResearchNeeded ResearchNeeded ResearchNeeded ResearchNeeded Research
Unfortunately, we lack a sound theoretical foundation

that would allow us to fully understand the factors that influ-
ence the understanding and use of conceptual data models
(Bock and Ryan, 1993).  Thus, research is forced to proceed
piece–meal with each experiment incrementally adding to our
knowledge of conceptual data modeling.  We feel that this
study is a positive step in that direction because it uniquely
investigates the ability of a database designer to understandunderstandunderstandunderstandunderstand
a data model once it has been created.

However, we have a long way to go.  A beginning point
is to identify those situations where one model is better than
another.  The study described herein moves toward that goal
by comparing the models for both simple and complex tasks.

Dependent Variable:  TIMEDependent Variable:  TIMEDependent Variable:  TIMEDependent Variable:  TIMEDependent Variable:  TIME

SourceSourceSourceSourceSource              DF        Type III SS             DF        Type III SS             DF        Type III SS             DF        Type III SS             DF        Type III SS   F–Value     Pr > F  F–Value     Pr > F  F–Value     Pr > F  F–Value     Pr > F  F–Value     Pr > F

TASKTASKTASKTASKTASK 1          1851652.46     256.81     0.0001    0.0001    0.0001    0.0001    0.0001

TECHTECHTECHTECHTECH 1              82793.71       11.48     0.0013    0.0013    0.0013    0.0013    0.0013

TASK*TECHTASK*TECHTASK*TECHTASK*TECHTASK*TECH 1         0.28         0.00     0.9950    0.9950    0.9950    0.9950    0.9950

Table 3Table 3Table 3Table 3Table 3: ANOVA Showing the Effects of Task andANOVA Showing the Effects of Task andANOVA Showing the Effects of Task andANOVA Showing the Effects of Task andANOVA Showing the Effects of Task and
Technique on TIMETechnique on TIMETechnique on TIMETechnique on TIMETechnique on TIME

A supplemental analysis of the mean time (in seconds)
for each of the four groups is presented in Table 4.  For the
simple task, EER subjects took an average of 312 seconds,
compared to 236 seconds for OMT subjects.  The difference is
significant (p=0.0183).  For the complex task, the average
EER time was 677 seconds and OMT was 600 seconds.  This
difference, also, is statistically significant (p=0.0221).  Thus,
it appears that for both simple and complex tasks, OMT is
faster to use and understand.

Although the time required to understand the model is
relatively short, it must be recognized that the time to create the
diagram from a problem description would be much more
time-consuming.  For example, the model produced from the
problem description used in the study by Batra, et al., (1990)
and Bock and Ryan (1993) took approximately one hour to
create(Bock and Ryan, 1993).  However, since this study
measures understanding time (from a completed model), we
would expect the understanding time to be significantly less
than creation time (given the same problem situation).

Perceived Ease–of–UsePerceived Ease–of–UsePerceived Ease–of–UsePerceived Ease–of–UsePerceived Ease–of–Use

The null form of Hypothesis 4 suggests that there are no
differences in perceived ease–of–use between EER and OMT
data models.  As presented in Table 5, we fail to reject
Hypothesis 4 based upon the available data.  Although the
scores for EER are slightly better (range=8 to 56, where lower
numbers indicate greater ease–of–use), the differences are not
significant for either the simple or the complex tasks.  Subjects
also indicated that the complexity of the task had no significant
bearing on the perceived ease–of–use.  The instrument used to

Table 4: Understanding Time by Data Model and TaskTable 4: Understanding Time by Data Model and TaskTable 4: Understanding Time by Data Model and TaskTable 4: Understanding Time by Data Model and TaskTable 4: Understanding Time by Data Model and Task

EEREEREEREEREER            OMT           OMT           OMT           OMT           OMT  p–value p–value p–value p–value p–value

 Simple Simple Simple Simple Simple 312            236  0.0183 0.0183 0.0183 0.0183 0.0183

 Complex Complex Complex Complex Complex  677            600  0.02210.02210.02210.02210.0221

 *cell values are in seconds

EEREEREEREEREER OMTOMTOMTOMTOMT p–valuep–valuep–valuep–valuep–value

SimpleSimpleSimpleSimpleSimple 25.86  27.33  0.4355

ComplexComplexComplexComplexComplex 21.57  24.23  0.6592

p–valuep–valuep–valuep–valuep–value  0.2450  0.2996

Table 5:  Comparing Perceived Ease–of–UseTable 5:  Comparing Perceived Ease–of–UseTable 5:  Comparing Perceived Ease–of–UseTable 5:  Comparing Perceived Ease–of–UseTable 5:  Comparing Perceived Ease–of–Use
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Tsichritzis and Lochovsky (1982) suggest that one data model
is probably not best universally; instead, we must find those
situations where the models are most appropriate. Also, Batra,
et al., (1990) recommend that the effect of different data
models on modeling performance be considered.  As new
models are introduced, they must be evaluated.  According to
Peckham and Maryanski (1988):  “Since the complexity of the
applications will continue to increase, the designer’s require-
ments of a conceptual model will similarly heighten, and
hence new models will continue to emerge” (p. 187).

ConclusionConclusionConclusionConclusionConclusion

This study has empirically compared OMT and EER
conceptual data modeling techniques along three dimensions:
(1) model understanding; (2) time to understand; and (3)
perceived ease–of–use.  Although the literature would suggest
that the O–O technique, OMT, would produce a more under-
standable and easier–to–use model, the majority of the results
of this study do not support these contentions.  Instead, results
indicate that the only difference between the two techniques is
in the time to understand – OMT is significantly faster for both
simple and complex problems.  However, this is a positive
finding.  OMT produced a model that is faster to understand
without a decrease in the level of understanding, which can
result in increases in productivity.
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EndnoteEndnoteEndnoteEndnoteEndnote
1 In this article, the generic term “data model” will refer to the
conceptual data model.  Other forms of data models will be
distinguished by using the formal names (e.g., the
implementable data model).
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