Chapter 10 Quantum Phase–Hebbian Image Processing

In this chapter, some specific characteristics of quantum-implementable phase-Hebbian content-addressable associative memory and pattern recognition are discussed. Quantum formalism, constrained by the closure relation, is generalized into a flexible information-processing system by a suitable (re)interpretation of quantum states involving "fuzzification" of the orthonormality and closure relations.

Core of the quantum associative net. Let us first repeat the core of the Quantum Associative Network model. In Feynman's path-integral formalism, the Schrodinger equation can be rewritten (AuxLit 16) in the form

$$\Psi(\vec{r}_2, t_2) = \int \int G(\vec{r}_1, t_1, \vec{r}_2, t_2) \Psi(\vec{r}_1, t_1) d\vec{r}_1 dt_1$$
(10.1)

DOI: 10.4018/978-1-61520-785-5.ch010

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

where the kernel G is the propagator or the Green function having form of a projection-operator (Bjorken & Drell, 1964/65):

$$G(\vec{r}, t_1, \vec{r_2}, t_2) = \sum_{k=1}^{P} \psi_k(\vec{r_1}, t_1) * \psi_k(\vec{r_2}, t_2)$$
(10.2)

The wave-function Ψ is a superposition of P eigen-wave-functions ψ_k which can represent plane-waves

$$\psi_{k}(\vec{r},t) = A_{k}(\vec{r},t)e^{i\varphi_{k}(\vec{r},t)}$$
(10.3)

or wavelets (Lee, 1996; Schempp, 1994, 1995).¹ For simplicity we will not use the Gabor wavelets as wave-packets ψ_k in the formalism explicitly, but this neuropsy-chologically-important option is allowed.

It is assumed that it is possible to encode information into quantum eigenwaves ψ_k : we let an *eigen-wave-function represent an image*. For each possible vector-basis ψ_k (k = 1,..., P) there is an expression of the same type as Equation (10.2) (Messiah, 1965) which "stores" the eigenpatterns and performs projections to eigen-subspaces. Now it will be shown how such a quantum system can be manipulated in order to realize content-addressable memory storage and associative retrieval.

Opening the closure relation. Because propagator (10.2) must reproduce the initial state in dynamical Equation (10.1) when $t_i = t_{22}$ the quantum closure relation

$$\sum_{k=1}^{P} \psi_k(\vec{r}_1, t) * \psi_k(\vec{r}_2, t) = \delta(\vec{r}_1 - \vec{r}_2) \text{ or } \sum_{k=1}^{P} \psi_k(\vec{r}_1) * \psi_k(\vec{r}_2) = \delta(\vec{r}_1 - \vec{r}_2)$$
(10.4)

must be satisfied (Messiah, 1965).

Closure relation (10.4) implies the postulate of complete and orthonormal set of quantum eigenstates: i.e $\Psi = \sum_{k} c_k \psi_k$ (completeness), and the scalar product of eigenvectors ψ_k , which have norm 1, is 0 (orthonormality).

Prescription (10.4) ensures reversible and unitary quantum evolution² determined by the linear Schrodinger equation (implying complete orthonormal set of eigenwaves in kernel— Equation (10.2)) *if* the system is closed, i.e. if there is no disturbance from environment. On the other hand, the same kernel, (10.2), serves as a projection-operator realizing non-unitary, non-linear and irreversible "collapse of the wave-function" *if* the system is *open*, i.e. if there is a disturbance from environment (Wheeler & Zurek, 1983). If we "perturb" the system, incorporating an "informa-

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

5 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: <u>www.igi-</u> <u>global.com/chapter/quantum-phase-hebbian-image-</u> processing/50509

Related Content

Improving Resiliency in SDN using Routing Tree Algorithms

Kshira Sagar Sahoo, Bibhudatta Sahoo, Ratnakar Dashand Brojo Kishore Mishra (2017). *International Journal of Knowledge Discovery in Bioinformatics (pp. 42-57).* www.irma-international.org/article/improving-resiliency-in-sdn-using-routing-treealgorithms/178606

SPCCTDM, a Catalogue for Analysis of Therapeutic Drug Monitoring Related Contents

Sven Ulrich, Pierre Baumann, Andreas Conca, Hans-Joachim Kuss, Viktoria Stieffenhoferand Christoph Hiemke (2012). *Computational Knowledge Discovery for Bioinformatics Research (pp. 319-328).*

www.irma-international.org/chapter/spcctdm-catalogue-analysis-therapeutic-drug/66718

Data Mining, Big Data, Data Analytics: Big Data Analytics in Bioinformatics

Priya P. Panigrahiand Tiratha Raj Singh (2017). *Library and Information Services for Bioinformatics Education and Research (pp. 91-111).*

www.irma-international.org/chapter/data-mining-big-data-data-analytics/176138

A Web Database IR-PDB for Sequence Repeats of Proteins in the Protein Data Bank

Selvaraj Samueland Mary Rajathei (2017). *International Journal of Knowledge Discovery in Bioinformatics (pp. 1-10).*

www.irma-international.org/article/a-web-database-ir-pdb-for-sequence-repeats-of-proteins-inthe-protein-data-bank/190790

The Humane Dimensions of Effective Communication

Bruce Hugman (2012). *Pharmacoinformatics and Drug Discovery Technologies: Theories and Applications (pp. 24-43).*

www.irma-international.org/chapter/humane-dimensions-effective-communication/64064