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ABSTRACT

Traditionally, the Evolutionary Computation (EC) techniques, and more specifically the Genetic Algo-
rithms (GAs), have proved to be efficient when solving various problems; however, as a possible lack,
the GAs tend to provide a unique solution for the problem on which they are applied. Some non global
solutions discarded during the search of the best one could be acceptable under certain circumstances.
Most of the problems at the real world involve a search space with one or more global solutions and
multiple local solutions; this means that they are multimodal problems and therefore, if it is desired to
obtain multiple solutions by using GAs, it would be necessary to modify their classic functioning outline
for adapting them correctly to the multimodality of such problems. The present chapter tries to establish,
firstly, the characterisation of the multimodal problems will be attempted. A global view of some of the
several approaches proposed for adapting the classic functioning of the GAs to the search of multiple
solutions will be also offered. Lastly, the contributions of the authors and a brief description of several
practical cases of their performance at the real world will be also showed.

INTRODUCTION a population: a randomly generated initial set of
individuals. Every one of these individuals —who
Following a general prospect, the GAs (Holland, represent a potential solution to the problem-,

1975) (Goldberg, 1989) try to find a solution using will evolve according to the theories proposed by
Darwin (Darwin, 1859) about natural selection
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and they will be more adapted to the required
solution as generations pass.

Nevertheless, the traditional GAs find certain
restrictions when the search space where they work
has, either more than a global solution, or anunique
global solution and multiple local optima. When
faced with such scenarios, a classical GA tends
to focalise the search on the environment of the
global solution; however, it might be interesting to
know the higher possible number of solutions due
todifferentreasons: exactsearch space knowledge,
implementation ease of local solutions compared
with the global one, interpretation ease of some
solutions compared with other ones, etc. To get
this, an iterative process will be performed until
the desired goals might be achieved. The process
will start with the individuals grouping into spe-
cies that will search independently a solution into
their related environments. Following the later,
the crossover operation will involve individuals of
different species in order not to leave search space
areas unexplored. The process will be repeated ac-
cording to the achievement of the desired goals.

Genetic Algorithms and Multimodal Search

MULTIMODAL PROBLEMS

The multimodal problems can be defined as those
problems that have either multiple global optima
or multiple local optima (Harik, 1995).

For this type of problems, it is interesting to
obtain the greatest number of solutions due to
several reasons; on one hand, when there is not
a total knowledge of the problem, the solution
obtained might not be the best one, as it can not
be stated that no better solution could be found
at the search space not explored yet. On the other
hand, although being certain that the best solution
has been achieved, there might be other equally
fitted or slightly worse solutions that might be
preferred due to different factors (easier applica-
tion, simpler interpretation, etc.) and therefore
considered globally better.

One of the most characteristic multimodal
functions used in lab problems is the Rastrigin
function (see Figure 1) which offers an excellent
graphical point of view about what multimodal-
ity means.

Providing multiple optimal (and valid) solu-
tions, and not only a unique global solution, is
crucial inmultiple environments. Usually, itis very

Figure 1. Rastrigin function: 3D and 2D representations
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