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AbSTRACT

This chapter first presents the interrelations between computing and genetics, which both are based on 
information and, particularly, self-reproducing artificial systems. It goes on to examine genetic code 
from a computational viewpoint. This raises a number of important questions about genetic code. These 
questions are stated in the form of an as yet unpublished working hypothesis. This hypothesis suggests 
that many genetic alterations are caused by the last base of certain codons. If this conclusive hypoth-
esis were to be confirmed through experiementation if would be a significant advance for treating many 
genetic diseases.

INTRODUCTION

The mutual, two-way relationships between genet-
ics and computing (see Table 1) go back a long way 
and are more wide-ranging, closer and deeper than 
what they might appear to be at first sight. The 
best-known contribution of genetics to computing 
is perhaps evolutionary computation. Evolutionary 
computation’s most noteworthy representatives 
are genetic algorithms and genetic programs as 
search strategies. The most outstanding inputs 
from computing to genetics are reproductive au-
tomata and genetic code deciphering. Therefore, 
section 2 will deal with von Neumann reproductive 

automata. Section 3 will discuss genetic code. 
Section 4 will introduce the well-know χ2 test 
because of this importance in establishing the 
working hypothesis. Later, section, will address 
genome deciphering. And finally section 6 will 
establish the conjecture or working hypothesis, 
which is the central conclusion of the paper, and 
define the future research lines.

SELF-REPRODUCING AUTOMATA

The most spectacular contribution of computing to 
genetics was unquestionably John von Neumann’s 
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premonitory theory of self-reproducing automata, 
i.e. the construction of formal models of automata 
capable of self-reproduction. Von Neumann gave a 
conference in 1948 titled “The General and Logical 
Theory of Automata” (Von Neumann, 1951, 1963) 
establishing the principles of how a machine could 
self-reproduce. The procedure von Neumann 
suggested was at first considered an interesting 
logical and mathematical speculation more than 
anything else. However, von Neumann’s view of 
how living beings reproduced (abstractedly sim-
pler than what it might appear) was acclaimed five 
years later, when it was confirmed, after James 
D. Watson and Francis Harry C. Crick (1953(a)) 
discovered the model of DNA.

It was as of 1950s that Information Theory (IT) 
exercised a remarkable influence on biology, as it 
did, incidentally, on many other fields removed 
from the strictly mathematical domain. It was 

precisely as of then that many of the life sciences 
started to adopt concepts proper to IT. All the infor-
mation required for the genesis and development 
of the life of organisms is actually located in the 
sequence of the bases of long DNA chains. Their 
instructions are coded according to a four-letter 
alphabet A, T, C and G. A text composed of the 
words written with these four letters constitutes 
the genetic information of each living being. The 
Nobel prize-winning physicist Erwin Schrödinger 
(1944) conjectured the existence of genetic code, 
which was demonstrated nine years later by 
Watson and Crick (1953(a), (b)), both awarded 
the Nobel prize for this discovery. It was in the 
interim, in 1948, when von Neumann established 
how a machine could self-reproduce.

Table 1. Computing vs. genetics

From genetics to computing From computing to genetics

Natural Computation (NC) ≡ Evolutionary Computation 
(EC) [Genetics Algorithms (GA) + Evolution Strategies 
(ES) + Evolutionary Programming (EP)] + Neural 
Networks (NN) + Genetic Programming

1966 Fogel, Owens and Walsh (1966) establish how 
finite state automata can be evolved by means of 
unit transformations and two genetic operators: 
selection and mutation.

1973 Rechemberg (1973) defined the evolutionary 
strategies of finite state machine populations.

1974 Holland (1975) and disciples defined genetic 
algorithms.

1992 Koza (1992) proposed the use of the evolutionary 
computation technique to find the best procedure 
for solving problems, which was the root of 
genetic programming.

1994 Michalewitz (1992) established evolutionary 
programs as a way of naturally representing 
genetic algorithms and context-sensitive genetic 
operators.

1940 Claude Elwood Shannon (1940) defended his 
PhD thesis titled “An Algebra for Theoretical 
Genetics”.

1944 Erwin Schrödinger (1983) conjectured that genetic 
code existed.

1948 John Von Neumann (1966) established the 
principles underlying a self-reproducing machine. 

1953 Crick (Watson, 1953) luckily but mistakenly 
named the small dictionary that shows the 
relationship between the four DNA bases and 
the 20 amino acids that are the letters of protein 
language genetic code.

1955 John G. Kemeny (1955) defined the characteristics 
of machine reproduction and how it could take 
place.

1975 Roger and Lionel S. Penrose (Penrose, 1974) 
tackled the mechanical problems of self-
reproduction based on Homer Jacobson’s and 
Kemeny’s work. 

1982 Tipler (1982) justified the use of self-reproducing 
automata.
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