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Chapter 7

APECS:
An Adaptively Parameterised Model of 

Associative Learning and Memory

I.P.L. McLaren
University of Exeter, UK

BACKGROUND: THE SEQUENTIAL 
LEARNING PROBLEM

The development of novel connectionist algo-
rithms (Rumelhart, Hinton, and Williams, 1986; 
Ackley, Hinton, and Sejnowski, 1985) capable of 
driving learning in multi-layer networks can be 
seen as one of the major developments in cogni-
tive science in the nineteen-eighties. One of these 
algorithms, Back Propagation (Rumelhart, Hinton, 
and Williams, 1986) used gradient descent to learn 
input / output relationships, and was typically 
instantiated in feed-forward architectures. This 
otherwise successful approach, however, came 

up against the sequential learning problem identi-
fied by McCloskey and Cohen (1989) and further 
analysed by Ratcliff (1990). A general statement 
of this problem is that if a network employing 
Back Propagation is first taught one set of input 
/ output relations, and then some other mapping 
is learnt whose input terms are similar to those 
first used in training, then a near complete loss of 
performance on the first mapping is observed on 
test. We can say that the new learning wipes out 
the old. This is not a necessary characteristic of 
the feed-forward architecture, because, if training 
alternates between the two mappings, repeatedly 
teaching first one and then the other, eventually a 
solution is reached that captures both sets of input 
/ output relationships. Thus, this “catastrophic 
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interference”, when new learning erases old, is 
only seen if the two mappings are learnt in se-
quence. This does not mean that this property of 
the learning algorithm can be ignored, however, 
as learning (in humans and networks) often takes 
place within a sequential format (eg see Ratcliff, 
1990; Hinton and Plaut, 1987; Sejnowski and 
Rosenberg, 1987).

As a simple example of this general type of 
problem, consider modelling a paired-associate 
experiment (based on Barnes and Underwood, 
1959) in which human subjects are required to 
learn a list (list 1) of eight nonsense syllable - 
adjective pairs to a criterion of 100%. That is, 
after some number of training trials, the subject 
is able to provide the correct adjectival response 
to each nonsense syllable stimulus. After learn-
ing list 1, the subjects learn list 2, which employs 
the same nonsense syllables as the first, but new 
adjectives paired with them. Training continues 
until subjects are near perfect on this list (>90%). 
They are then asked to recall the original list 1 
adjectival responses for each nonsense syllable. 
Performance drops to around 50% for this list, 
which is taken to be an instance of retroactive 
interference (control groups suggest that it is not 
simply the passage of time that is responsible for 
this decline in performance).

As McCloskey and Cohen (1989) showed, 
this task can be modelled in a feed-forward two 
layer network running Back Propagation. The list 
‘context’ and the nonsense syllables (eg dax, teg) 
are the input, and the adjectives (e.g. regal, sleek) 
are the output (see Figure 1 which shows both the 
network in question and the experimental design).

After cycling through the list several times, 
activation of the input nodes representing list 
context in conjunction with a nonsense syllable 
results in the activation of the output nodes cor-
responding to the correct adjective via the set of 
connection strengths or weights developed by the 
network. During learning of the second list, nodes 
standing for the List 2 context are used in conjunc-
tion with the old nonsense syllable nodes, to-

gether with extra output nodes representing the 
new adjectives (keen, swift). Training proceeds 
until activation of nodes representing List 2 + dax 
(for example) results in activation of the ‘keen’ 
node. Now, List 1 recall can be tested by present-
ing List 1 + dax as input. The result produced by 
the network is – ‘keen’. There is no sign of previ-
ously having learnt ‘regal’ to this input. McClo-
skey and Cohen were able to show that even 
minimal training on List 2 resulted in (at best!) 
nearly complete loss of List 1 on test, rather than 
the 50% loss shown in humans (at worst). This 
result does not depend on the local coding scheme 
employed here, as they obtained the same outcome 
using distributed representations of contexts, 
stimuli and responses.

Figure 2 gives simulation results for this 
sequential learning task employing a two item 
list and employing a modified version of Back 
Propagation that is used throughout this paper. 
Despite these minor differences, the results are the 
same as those reported by McCloskey and Cohen.

After training on List 1 until performance meets 
their “within 0.1” criterion on test, i.e. activation 
of an input pattern produces the correct response 
to within 0.1 of each node’s target activation 
level, learning the List 2 items to the same crite-
rion powerfully degrades List 1 performance. In 
fact, testing on List 1 now fails to meet a “best 
match” criterion which requires that the output 
be more similar to the target response than to any 
of the other possible responses in the lists. Anal-
ysis of these simulation results indicates that the 
difficulty facing the network is that the initial List 
1 solution (i.e. the weights) is not one that can 
survive learning of List 2, because the List 1 re-
sponses to the nonsense syllables have to be 
suppressed in some fashion, and once this is done 
they cannot be recovered. Only when the lists are 
alternated during training can a List 1 solution 
that is protected from the effects of List 2 learning 
be developed (an example is shown in Figure 3). 
In fact, if the network was alternated on the two 
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