Chapter 15

New Directions in the Research of Technology-Enhanced Education

Robert N. Ronau
University of Louisville, USA

Christopher R. Rakes
University of Louisville, USA

Margaret L. Niess
Oregon State University, USA

Lauren Wagener
University of Tennessee, USA

David Pugalee
University of North Carolina, USA

Christine Browning
Western Michigan University, USA

Shannon O. Driskell
University of Dayton, USA

Susann M. Mathews
Wright State University, USA

ABSTRACT

This chapter presents the results of a systematic review of literature in which the authors examined instructional technology integration in career and technical education, mathematics, language arts, social studies, and science. Three lenses were used to examine the literature: a research design framework, a teacher knowledge framework (CFTK), and a technology integration framework (TPACK). The research design framework revealed a low percentage of papers that were actually research studies (41.2%), favoring qualitative design (70% of the 41.2%). Consequently, educators may have difficulty

DOI: 10.4018/978-1-61520-899-9.ch015
INTRODUCTION

Teachers use instructional technology for online courses, video conferencing, electronic portfolios, and other exploratory projects. Literature reviews are important tools that teachers can use to evaluate instructional technology and develop strategies for its effective use. A systematic review of literature can make such evaluations far easier and more effective by synthesizing the results of the studies on a given topic using well-articulated methodological processes. The purpose of this chapter is to provide a systematic review of the impact of technology on teaching and learning and to propose a framework for looking at teacher knowledge from which gaps in the literature can be addressed. In this paper, the term “technology” refers to digital technology as opposed to other forms of instructional tools (e.g., overhead projectors, manipulatives).

Means, Wagner, Haertel, and Javitz (2003) identified two major issues regarding the use of technology for instruction: the pedagogical value of specific technology tools and the cumulative effects of technology exposure over time on student learning. In order to address these issues, educators need to assess specific sub-questions to gauge the effectiveness of technology as a teaching tool (e.g., What conditions foster learning with technology; what pedagogical strategies promote learning with technology; what teacher qualifications are related to content, technology, and implementation of pedagogical strategies; and to what internal and external classroom constraints must teachers attend when incorporating technology?). The complex nature of these questions requires multiple types of research and design.

Bell, Schrum, and Thompson (2009) suggested that the types of research needed to adequately address these issues include: (1) experimental or quasi-experimental studies, (2) large-scale studies, (3) studies with sufficient statistical information to be included in meta analysis and mixed-methodology studies, (4) studies with rich analysis of student content knowledge, and (5) studies that address the complexities of learners, classrooms, and schools. Recently, federal funding agencies such as the Institute of Education Sciences (IES; Whitehurst, 2003) have emphasized large scale experimental studies as the gold standard for scientific research. One such study, Effectiveness of Reading and Mathematics Software Products: Findings from the First Student Cohort (Dynarski et al., 2007), found that the technology programs used showed no significant improvement in student test scores in mathematics and reading. However, the results from a single study, even a large scale experimental study, are not conclusive in and of themselves. For example, Fitzar et al. (2007) challenged the generalizability of the Dynarski et al. (2007) study, noting that “this study oversimplifies the case by pushing aside these complicated relationships, and treating all the software programs as members of the same generic set of ‘mathematics software’ (or ‘reading software’)” (p. 3). Ronau et al. (2008) added
33 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/new-directions-research-technology-enhanced/44365

Related Content

Online or Traditional: A Study to Examine Course Characteristics Contributing to Students’ Preference for Classroom Settings
Tim Klaus and Chuleeporn Changchit (2010). Web-Based Education: Concepts, Methodologies, Tools and Applications (pp. 73-83).
www.irma-international.org/chapter/online-traditional-study-examine-course/41332

Analysis of the Perception of Students about Biometric Identification
www.irma-international.org/article/analysis-of-the-perception-of-students-about-biometric-identification/126930

EVAWEB V2: Enhancing a Web-Based Assessment Systems Focused on Nonrepudiation Use and Teaching
www.irma-international.org/article/evaweb-enhancing-web-based-assessment/2997

Learner-Centered Teaching and the Use of Technology
Annette Greer and Vivian W. Mott (2009). International Journal of Web-Based Learning and Teaching Technologies (pp. 1-16).
www.irma-international.org/article/learner-centered-teaching-use-technology/37565

New Directions in the Research of Technology-Enhanced Education
www.irma-international.org/chapter/new-directions-research-technology-enhanced/44365