Chapter 23 TACMIS: A Total Access Care and Medical Information System M. Cassim Ritsumeikan Asia Pacific University, Japan #### **ABSTRACT** TACMIS is an inclusive solution to the management of health care and medical information and its design is based on a detailed process analysis of patient journeys and the pathways of clinical care of stroke patients as they progress from acute care, through rehabilitation to discharge and independent living, often with a residual disability. The findings are the work of a team based in the Discovery Research Laboratory at Ritsumeikan University in Japan. The clinical analysis was conducted at King's College Hospital in London and in several care institutions for the disabled and the aged in Japan. #### INTRODUCTION #### Background, Aims and Focus How can disabled and aged populations gain access to and benefit from information and communications technologies (ICT) through the development of inclusive design systems? This was the fundamental question asked when the program began in May 2000. It was initiated as a cross-national collaborative research and development program of the Centre for Global Education and Research (CGER) at Ritsumeikan University, and is currently DOI: 10.4018/978-1-60566-266-4.ch023 being executed at the Discovery Research Laboratory (DRL) established within CGER to incubate projects that link ICT with human, social and environmental needs (Cassim, M., 2004). TACMIS is a project that aims to create exemplars for this form of interlinking in the field of health care. This chapter will focus on the inclusive design aspects of TACMIS. The TACMIS system is a composite of three integrated subsystems: HIMS: A Hospital Information Management System, which largely deals with the acute care phase and rehabilitation in a secondary care situation; - SEAHCSS: A Socio-Economic and Health Care Support System, which extends the findings of HIMS into primary care situations and into the aggregate realm of epidemiology and health care policy; and - PEECSS: A Patient Empowerment and Environmental Control Support System, which extends care into the home environment and supports independent living. The development work carried out thus far focuses on HIMS and PEECSS, with SEAHCSS seen as likely to evolve as a natural extension through dialogue with stakeholders involved in health care policy formulation. The chapter describes the access technologies used for integrated and inclusive solutions to health informatics issues in general and for dealing with stroke disability in particular. The findings indicate that such solutions will enhance the quality of electronic patient and health records, enabling them to contribute directly to improvements in a patient's individual care. They will also support a more enjoyable level of independent living for stroke victims with a residual disability, who are seen as a microcosm of the wider disabled and aged populations. #### **TACMIS** ### System Design and Key Questions TACMIS commenced with an analysis of health informatics needs in several care and medical institutions in Japan and of national trends in several selected countries, including the United Kingdom. Based on this, the core technologies to be used in working towards prototype development were clarified, selected after discussions at several rounds of *Technology Seeds Seminars*, held in Japan and the USA. Next, the scope of the project was defined when it was decided to work with stroke patients and their residual disabilities of neurovascular origin, and a case study was designed. This has been conducted as a collaborative exercise between DRL/CGER at Ritsumeikan University, GKT Medical School at King's College London and the Acute Stroke Unit at King's College Hospital. The output of this exercise, the conceptual systems design of an integrated and inclusive health informatics system for the TACMIS prototype, is described below. As noted above TACMIS is tripartite in composition (Figure 1), comprising of: (1) HIMS: A Hospital Information Management System, which largely deals with the acute care phase and rehabilitation in a secondary care situation; (2) SEAHCSS: A Socio-Economic and Health Care Support System, which extends the findings of HIMS into primary care situations and into the aggregate realm of epidemiology and health care policy; and (3) PEECSS: A Patient Empowerment and Environmental Control Support System, which extends care into the home environment and supports independent living. The three components are integrated into a holistic health informatics record, with the patient/care receiver seen as the integrating element. In this chapter integration is seen as the process of bringing together critical elements of the system, the information it contains and the stakeholders involved. The purpose of integration is to enhance the performance of the system (in terms of speed, quality, reliability, etc) and to work towards enabling those participants (stakeholders) in the system who are disadvantaged to contribute more effectively. Inclusion, in the case of TACMIS, is seen as the process which makes it possible for the target of health care (the stroke patient) to participate to the fullest extent possible in the care process, in daily living activities (DLA) and in contributing socially and culturally at the highest conceivable level. Access technologies are the means by which this possibility is afforded to the target of care either directly or indirectly. The latter includes technologies that facilitate system integration. 10 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/tacmis-total-access-care-medical/42617 #### Related Content #### Classification of Brain MR Images Using Corpus Callosum Shape Measurements Gaurav Vivek Bhaleraoand Niranjana Sampathila (2015). *International Journal of Biomedical and Clinical Engineering (pp. 48-56).* www.irma-international.org/article/classification-of-brain-mr-images-using-corpus-callosum-shape-measurements/138227 ## Bioinformatics: The Convergence between Biotechnology and ITC Impacts on the Productive Sector Jorge E. Niosi (2017). Comparative Approaches to Biotechnology Development and Use in Developed and Emerging Nations (pp. 18-44). www.irma-international.org/chapter/bioinformatics/169513 ## Tools and Considerations to Develop the Blueprint for the Next Generation of Clinical Care Technology Chris Daniel Riha (2019). *International Journal of Biomedical and Clinical Engineering (pp. 1-8)*. www.irma-international.org/article/tools-and-considerations-to-develop-the-blueprint-for-the-next-generation-of-clinical-care-technology/219303 #### Artificial Intelligence in Medicine and Biomedicine Athanasios Zekiosand Dimitra Petroudi (2006). *Handbook of Research on Informatics in Healthcare and Biomedicine (pp. 346-351).* www.irma-international.org/chapter/artificial-intelligence-medicine-biomedicine/20598 ## Integrative fMRI-MEG Methods and Optically Pumped Atomic Magnetometers for Exploring Higher Brain Functions Tetsuo Kobayashi (2011). Early Detection and Rehabilitation Technologies for Dementia: Neuroscience and Biomedical Applications (pp. 9-17). www.irma-international.org/chapter/integrative-fmri-meg-methods-optically/53416