
52 International Journal of Grid and High Performance Computing, 1(3), 52-72, July-September 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

aBstraCt

The development of massively distributed applications with enormous demands for computing
power, memory, storage and bandwidth is now possible with the Grid. Despite these advances,
building Grid applications is still very difficult. We present JGRIM, an approach to easily gridify
Java applications by separating functional and Grid concerns in the application code, and report
evaluations of its benefits with respect to related approaches. The results indicate that JGRIM
simplifies the process of porting applications to the Grid, and the Grid code obtained from this
process performs in a very competitive way compared to the code resulting from using similar
tools. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords: Dependency Injection; Grid Computing; Gridification; Grid Programming Models;
Grid Resources; JGRIM

iNtroDUCtioN

The Grid (Foster and Kesselman, 2003)
is a distributed computing environment in
which resources from dispersed sites are
virtualized through specialized services
to provide applications with vast execu-
tion capabilities. Just like an electrical in-
frastructure, which spreads over cities to
convey and deliver electricity, the Grid
offers a computing infrastructure to which
applications can be easily “plugged” and

efficiently	executed	by	leveraging	resources	
of different administrative domains. Pre-
cisely, “Grid” comes from an analogy with
the electrical grid, since applications will
take advantage of Grid resources as easily
as electricity is now consumed.

Unfortunately, this analogy does not
completely	hold	yet	since	it	is	difficult	to	
“gridify” an application without rewriting
or modifying it. A major problem is that
most Grid toolkits provide APIs for merely
implementing applications from scratch

Grid-enabling applications
with JGriM

Cristian Mateos, ISISTAN - UNCPBA, Argentina
Alejandro Zunino, ISISTAN - UNCPBA, Argentina
Marcelo Campo, ISISTAN - UNCPBA, Argentina

IGI PUBLISHING

This paper appears in the publication, International Journal of Grid and High Performance Computing,Volume 1, Issue 3

edited by Emmanuel Udoh and Frank Zhigang Wang © 2009, IGI Global

701 E. Chocolate Avenue, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 5099

International Journal of Grid and High Performance Computing, 1(3), 52-72, July-September 2009 53

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(Mateos et al., 2008a). Examples of such
toolkits are JavaSymphony (Fahringer
and Jugravu, 2005), Java CoG Kit (von
Laszewski et al., 2003), GSBL (Bazinet
et al., 2007), GAT (Allen et al., 2005) and
MyCoG.NET (Paventhan et al., 2006).
Hence, the application logic results mixed
up with code for using Grid services, mak-
ing maintainability, testing and portability
to different Grid libraries and platforms
somewhat hard. Furthermore, gridifying
existing	code	requires	to	rewrite	significant	
portions of it to use those APIs. These
problems are partially addressed by tools
that take an executable, along with user
parameters (e.g. input arguments, CPU and
memory requirements, etc.), and wrap the
executable with a component that isolates
the details of the Grid. Some tools falling
in this category are GEMLCA (Delaittre et
al.,	2005),	LGF	(Baliś	&	Wegiel,	2008)	and	
GridSAM (McGough et al., 2008). How-
ever, the output of these tools are coarse
grained applications whose execution
cannot	be	configured	to	make	better	use	of	
Grid resources (e.g. parallelize and/or dis-
tribute individual application components).
Overall, this represents a trade-off between
ease	 of	 gridification	 versus	 flexibility	 to	
configure	the	runtime	aspects	of	gridified	
applications (Mateos et al., 2008a).

To address these issues, we propose
JGRIM, a novel method for porting Java
applications onto service-oriented Grids,
this is, based on Web Services. JGRIM
minimizes the requirement of source code
modification	when	gridifying	Java	applica-
tions, and provides simple mechanisms to
effectively tune transformed applications.
JGRIM follows a two-step	 gridification	
methodology,	 in	 which	 developers	 first	
implement and test the logic of their ap-
plications, and then Grid-enable them by
undemandingly and non invasively inject-

ing Grid services. Therefore, we conceive
gridification	as	shaping	the	source	code	of	
an ordinary application according to few
coding conventions, and then adding Grid
concerns to it. In a previous paper (Mateos
et al., 2008b), we reported preliminary
comparisons between JGRIM and other
approaches for gridifying software in terms
of source code metrics. In this article we
also report JGRIM execution performance
on an Internet-based Grid, measuring
execution time and network usage of two
resource-intensive applications. The rest of
the article analyzes the most relevant related
works, describes JGRIM, and presents the
experimental evaluations.

relateD worK

Motivated by the complex and challenging
nature of porting conventional applications
to the Grid (Gentzsch, 2009), research in
tools and methods to easily gridify ordinary
software is growing at an astonishingly
rate. Besides providing APIs for developing
and executing Grid applications, many of
these tools actually materialize alternative
approaches	to	support	easy	gridification	of	
existing applications. For an exhaustive
survey on technologies to port applications
to the Grid, see (Mateos et al., 2008a).
Below we describe a representative subset
of such tools.

ProActive (Baduel et al., 2006) is a
platform for parallel distributed comput-
ing that provides technical services, a
support which allows users to address non-
functional concerns (e.g. load balancing
and fault tolerance) by plugging certain
external	 configuration	 to	 the	 application	
code at deployment time. ProActive ap-
plications comprise one or more mobile

19 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/grid-enabling-applications-jgrim/3970

Related Content

A Meta-Design Model for Creative Distributed Collaborative Design
Li Zhu, Barbara R. Barricelliand Claudia Iacob (2013). Development of Distributed

Systems from Design to Application and Maintenance (pp. 252-268).

www.irma-international.org/chapter/meta-design-model-creative-distributed/72257

Computational Performance Analysis of Neural Network and Regression

Models in Forecasting the Societal Demand for Agricultural Food Harvests
 Balaji Prabhu B. V.and M. Dakshayini (2020). International Journal of Grid and High

Performance Computing (pp. 35-47).

www.irma-international.org/article/computational-performance-analysis-of-neural-network-and-

regression-models-in-forecasting-the-societal-demand-for-agricultural-food-harvests/261783

Persistence and Communication State Transfer in an Asynchronous Pipe

Mechanism
Philip Chanand David Abramson (2011). Cloud, Grid and High Performance

Computing: Emerging Applications (pp. 238-254).

www.irma-international.org/chapter/persistence-communication-state-transfer-

asynchronous/54932

Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier

Detection
Honglong Xu, Zhonghao Liang, Kaide Huang, Guoshun Huangand Yan He (2024).

International Journal of Grid and High Performance Computing (pp. 1-17).

www.irma-international.org/article/pre-cutoff-value-calculation-method-for-accelerating-metric-

space-outlier-detection/334125

Fault-Tolerant Strategies in the Tree-Based Fog Computing Model
Ryuji Oma, Shigenari Nakamura, Tomoya Enokidoand Makoto Takizawa (2020).

International Journal of Distributed Systems and Technologies (pp. 72-91).

www.irma-international.org/article/fault-tolerant-strategies-in-the-tree-based-fog-computing-

model/261830

http://www.igi-global.com/article/grid-enabling-applications-jgrim/3970
http://www.igi-global.com/article/grid-enabling-applications-jgrim/3970
http://www.irma-international.org/chapter/meta-design-model-creative-distributed/72257
http://www.irma-international.org/article/computational-performance-analysis-of-neural-network-and-regression-models-in-forecasting-the-societal-demand-for-agricultural-food-harvests/261783
http://www.irma-international.org/article/computational-performance-analysis-of-neural-network-and-regression-models-in-forecasting-the-societal-demand-for-agricultural-food-harvests/261783
http://www.irma-international.org/chapter/persistence-communication-state-transfer-asynchronous/54932
http://www.irma-international.org/chapter/persistence-communication-state-transfer-asynchronous/54932
http://www.irma-international.org/article/pre-cutoff-value-calculation-method-for-accelerating-metric-space-outlier-detection/334125
http://www.irma-international.org/article/pre-cutoff-value-calculation-method-for-accelerating-metric-space-outlier-detection/334125
http://www.irma-international.org/article/fault-tolerant-strategies-in-the-tree-based-fog-computing-model/261830
http://www.irma-international.org/article/fault-tolerant-strategies-in-the-tree-based-fog-computing-model/261830

