
196

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

Combinatorial Testing
Renée C. Bryce

Utah State University, USA

Yu Lei
University of Texas, Arlington, USA

D. Richard Kuhn
National Institute of Standards and Technology, USA

Raghu Kacker
National Institute of Standards and Technology, USA

I. IntroductIon

Software systems are complex and can incur
exponential numbers of possible tests. Testing is
expensive and trade-offs often exist to optimize
the use of resources. Several systematic approaches
to software testing have been proposed in the
literature. Category partitioning is the base of all
systematic approaches as finite values of param-
eters are identified for testing. Each of these finite

parameter-values may be tested at least once, in
specified combinations together, or in exhaustive
combination. The simplest approach tests all values
at least once. The most thorough approach exhaus-
tively tests all parameter-value combinations. While
testing only individual values may not be enough,
exhaustive testing of all possible combinations is
not always feasible. Combination strategies are a
reasonable alternative that falls in between these
two extremes.

aBstract

Software systems today are complex and have many possible configurations. Products released with
inadequate testing can cause bodily harm, result in large economic losses or security breaches, and af-
fect the quality of day-to-day life. Software testers have limited time and budgets, frequently making it
impossible to exhaustively test software. Testers often intuitively test for defects that they anticipate while
less foreseen defects are overlooked. Combinatorial testing can complement their tests by systematically
covering t-way interactions. Research in combinatorial testing includes two major areas (1) algorithms
that generate combinatorial test suites and (2) applications of combinatorial testing. The authors review
these two topics in this chapter.

DOI: 10.4018/978-1-60566-731-7.ch014

197

Combinatorial Testing

Consider an on-line store that has four param-
eters of interest as shown in Table 1. There are
three log-in types; three types of member status;
three discount options; and three shipping options.
Different end users may have different preferences
and will likely use different combinations of these
parameters. To exhaustively test all combinations
of the four parameters that have 3 options each
from Table 1 would require 34 = 81 tests.

In this example, exhaustive testing requires
81 test cases, but pair-wise combinatorial testing
uses only 9 test cases. Instead of testing every
combination, all individual pairs of interactions
are tested. The resulting test suite is shown in
Table 2, and is contains only 9 tests. All pairs of
combinations have been combined together at
least once during the testing process. For instance,
the first test from Table 2 covers the following
pairs: (New member - not logged in, Guest),
(New member - not logged in, $5 off holiday
discount), (New member - not logged in, Standard
(5-7 day)), (Guest, None), (Guest, Standard (5-7

day)), and (None, Standard (5-7 day)). The entire
test suite covers every possible pairwise combi-
nation between components. This reduction in
tests amplifies on larger systems - a system with
20 factors and 5 levels each would require 520 =
95,367,431,640,625 exhaustive tests! Pairwise
combinatorial testing for 520 can be achieved in
as few as 45 tests.

II. Background

Combinatorial testing is simple to apply. As a
specification-based technique, combinatorial
testing requires no knowledge about the imple-
mentation under test. Note that the specification
required by some forms of combinatorial testing
is lightweight, as it only needs to identify a set of
parameters and their possible values. This is in
contrast with other testing techniques that require
a complex operational model of the system under
test. Finally, assuming that the parameters and

Table 1. Four parameters that have three possible settings each for an on-line store

Log-in Type Member Status Discount Shipping

New member - not logged in Guest None Standard (5-7 day)

New-member - logged in Member 10% employee discount Expedited (3-5 day)

Member - logged in Employee $5 off holiday discount Overnight

Table 2. A pair-wise combinatorial test suite

Test
No.

Log-in Type Member Status Discount Shipping

1 New member - not logged in Guest None Standard (5-7 day)

2 New member - not logged in Member 10% employee discount Expedited (3-5 day)

3 New member - not logged in Employee $5 off holiday discount Overnight

4 New-member - logged in Guest $5 off holiday discount Expedited (3-5 day)

5 New-member - logged in Member None Overnight

6 New-member - logged in Employee 10% employee discount Standard (5-7 day)

7 Member - logged in Guest 10% employee discount Overnight

8 Member - logged in Member $5 off holiday discount Standard (5-7 day)

9 Member - logged in Employee None Expedited (3-5 day)

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/combinatorial-testing/37033

Related Content

Automatic Correction of Free Format MCQ Tests
Muaaz Habeek, Charaf Eddine Dridiand Mohamed Badeche (2020). International Journal of Software

Innovation (pp. 50-64).

www.irma-international.org/article/automatic-correction-of-free-format-mcq-tests/243379

Hybrid Technique for Complexity Analysis for Java Code
Mohammad Subhi Al-Batah, Nouh Alhindawi, Rami Malkawiand Ahmad Al Zuraiqi (2019). International

Journal of Software Innovation (pp. 118-133).

www.irma-international.org/article/hybrid-technique-for-complexity-analysis-for-java-code/230927

Neural Network Control of a Laboratory Magnetic Levitator
J. Katendeand M. Mustapha (2013). Integrated Models for Information Communication Systems and

Networks: Design and Development (pp. 361-374).

www.irma-international.org/chapter/neural-network-control-of-a-laboratory-magnetic-levitator/79673

Agile Team Measurement to Review the Performance in Global Software Development
Chamundeswari Arumugamand Srinivasan Vaidyanathan (2020). Crowdsourcing and Probabilistic

Decision-Making in Software Engineering: Emerging Research and Opportunities (pp. 81-93).

www.irma-international.org/chapter/agile-team-measurement-to-review-the-performance-in-global-software-

development/235763

Using Model-Driven Architecture Principles to Generate Applications based on Interconnecting

Smart Objects and Sensors
Cristian González Garcíaand Jordán Pascual Espada (2014). Advances and Applications in Model-Driven

Engineering (pp. 73-87).

www.irma-international.org/chapter/using-model-driven-architecture-principles/78611

http://www.igi-global.com/chapter/combinatorial-testing/37033
http://www.irma-international.org/article/automatic-correction-of-free-format-mcq-tests/243379
http://www.irma-international.org/article/hybrid-technique-for-complexity-analysis-for-java-code/230927
http://www.irma-international.org/chapter/neural-network-control-of-a-laboratory-magnetic-levitator/79673
http://www.irma-international.org/chapter/agile-team-measurement-to-review-the-performance-in-global-software-development/235763
http://www.irma-international.org/chapter/agile-team-measurement-to-review-the-performance-in-global-software-development/235763
http://www.irma-international.org/chapter/using-model-driven-architecture-principles/78611

