
259

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

Mining Past-Time
Temporal Rules

A Dynamic Analysis Approach*

David Lo
Singapore Management University, Singapore

Siau-Cheng Khoo
National University of Singapore, Singapore

Chao Liu
Microsoft	Research	–	Redmond,	USA

ABSTRACT

Specification	mining	is	a	process	of	extracting	specifications,	often	from	program	execution	traces.	These	
specifications	can	in	turn	be	used	to	aid	program	understanding,	monitoring	and	verification.	There	are	
a	number	of	dynamic-analysis-based	specification	mining	tools	in	the	literature,	however	none	so	far	
extract past time temporal expressions in the form of rules stating: “whenever a series of events occur,
previously	another	series	of	events	happened	before”.	Rules	of	this	format	are	commonly	found	in	prac-
tice	and	useful	for	various	purposes.	Most	rule-based	specification	mining	tools	only	mine	future-time	
temporal	expression.	Many	past-time	temporal	rules	like	“whenever	a	resource	is	used,	it	was	allocated	
before”	are	asymmetric	as	the	other	direction	does	not	holds.	Hence,	there	is	a	need	to	mine	past-time	
temporal	rules.	In	this	chapter,	the	authors	describe	an	approach	to	mine	significant	rules	of	the	above	
format	occurring	above	a	certain	statistical	thresholds	from	program	execution	traces.	The	approach	
start	from	a	set	of	traces,	each	being	a	sequence	of	events	(i.e.,	method	invocations)	and	resulting	in	
a	set	of	significant	rules	obeying	minimum	thresholds	of	support	and	confidence.	A	rule	compaction	
mechanism	is	employed	to	reduce	the	number	of	reported	rules	significantly.	Experiments	on	traces	of	
JBoss Application Server and Jeti instant messaging application shows the utility of our approach in
inferring	interesting	past-time	temporal	rules.

DOI: 10.4018/978-1-60566-758-4.ch013

260

Mining Past-Time Temporal Rules

INTRODuCTION

Different from many engineering products that
rarely change, software changes often through-
out its lifespan. This phenomenon has been well
studied under the umbrella notion of software
evolution. Software maintenance effort deals
with the management of such changes, ensuring
that the software remains correct while additional
features are incorporated (Grubb & Takang, 2003).
Maintenance cost can contribute up to 90% of
software development cost (Erlikh, 2000). Re-
ducing maintenance cost and ensuring a program
remains correct during evolution are certainly two
worthwhile goals to pursue.

A substantial portion of maintenance cost is due
to the difficulty in understanding an existing code
base. Studies show that program comprehension
can contribute up to 50% of the maintenance cost
(Fjeldstad & Hamlen, 1983; Standish, 1984). A
challenge to software comprehension is the main-
tenance of an accurate and updated specification as
program changes. As a study shows, documented
specifications often remain unchanged during
program evolution (Deelstra et al., 2004). One
contributing factor is the short-time-to-market
requirement of software products (Capilla & Due-
nas, 2003). Multiple cycles of software evolution
can render the outdated specification invalid or
even misguiding.

To ensure correctness of a software system,
model checking (Clarke et al., 1999) has been
proposed. It accepts a model and a set of formal
properties to check. Unfortunately, difficulty in
formulating a set of formal properties has been a
barrier to its wide-spread adoption (Ammons et al.,
2002). Adding software evolution to the equation,
the verification process is further strained. First,
ensuring correctness of software as changes are
made is not a trivial task: a change in one part of
a code might induce unwanted effects resulting in
bugs in other parts of the code. Furthermore, as a
system changes and features are added, there is
a constant need to add new properties or modify

outdated properties to render automated verifica-
tion techniques effective in detecting bugs and
ensuring the correctness of the system.

Addressing the above problems, there is a need
for techniques to automatically reverse engineer
or mine formal specifications from program.
Recently, there has been a surge in software en-
gineering research to adopt machine learning and
statistical approaches to address these problems.
One active area is specification discovery (Am-
mons et al., 2002; Cook & Wolf, 1998; Lo & Khoo,
2006; Reiss & Renieris, 2001), where software
specification is reverse-engineered from program
traces. Employing these techniques ensures speci-
fications remain updated; also it provides a set of
properties to verify via formal verification tools
like model checking. To re-emphasize, the benefits
of specification mining are as follows:

1. Aid program comprehension and mainte-
nance by automatic recovery of program
behavioral models, e.g., (Cook & Wolf,
1998; Lo & Khoo, 2006; Reiss & Renieris,
2001).

2. Aid program verification (also runtime
monitoring) in automating the process of
“formulating specifications”, e.g., (Ammons
et al., 2002; Yang et al., 2006).

Most specification miners extract specifica-
tions in the form of automata (Ammons et al., 2002;
Cook & Wolf, 1998; Lo & Khoo, 2006; Reiss &
Renieris, 2001) or temporal rules (Lo et al., 2008a;
Yang et al., 2006). Usually a mined automaton
expresses the whole behaviour of a system under
analysis. Mined rules express strongly-observed
constraints each expressing a property which holds
with certain statistical significance.

Rules mined in (Lo et al., 2008a; Yang et al.,
2006) express future-time temporal expressions.
Yang et al. mine two event rules of the form:
“Whenever an event occurs, eventually another
event occurs in the future”. Lo et al. mine temporal
rules of arbitrary length of the form: “Whenever a

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/mining-past-time-temporal-rules/36451

Related Content

Shifting Grounds in Exploring Diverse Approaches to AI Regulation: Comparative Analysis of

Google, EU, and IFLA Perspectives on AI Policy
Shalini Pandey, Aditya Agrawal, Shailesh Kumar Pandeyand Md Mudassir Imam (2025). Modern

Perspectives on Artificial Intelligence and Law (pp. 207-242).

www.irma-international.org/chapter/shifting-grounds-in-exploring-diverse-approaches-to-ai-regulation/382152

The Impact of Artificial Intelligence on the Banking Industry: Changing Face of Modern Banks
Swati Sharmaand Rajinder Kaur (2025). Exploring AI Implications on Law, Governance, and Industry (pp.

249-260).

www.irma-international.org/chapter/the-impact-of-artificial-intelligence-on-the-banking-industry/373415

An Activity Monitoring Application for Windows Mobile Devices
Hayat Al Mushcab, Kevin Curranand Jonathan Doherty (2010). International Journal of Ambient Computing

and Intelligence (pp. 1-18).

www.irma-international.org/article/activity-monitoring-application-windows-mobile/46020

Artificial Intelligence and Academic Scholarship
Saptarshi Kumar Sarkar, Anupama Senand Sreya Barik (2025). Artificial Intelligence in Records and

Information Management (pp. 425-452).

www.irma-international.org/chapter/artificial-intelligence-and-academic-scholarship/375177

BTSAMA: A Personalized Music Recommendation Method Combining TextCNN and Attention
Shaomin Lvand Li Pan (2023). International Journal of Ambient Computing and Intelligence (pp. 1-23).

www.irma-international.org/article/btsama/327351

http://www.igi-global.com/chapter/mining-past-time-temporal-rules/36451
http://www.irma-international.org/chapter/shifting-grounds-in-exploring-diverse-approaches-to-ai-regulation/382152
http://www.irma-international.org/chapter/the-impact-of-artificial-intelligence-on-the-banking-industry/373415
http://www.irma-international.org/article/activity-monitoring-application-windows-mobile/46020
http://www.irma-international.org/chapter/artificial-intelligence-and-academic-scholarship/375177
http://www.irma-international.org/article/btsama/327351

