
233

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Computational Intelligence 
for Functional Testing

C. Peng Lam
Edith Cowan University, Australia

INTRODuCTION

Software testing is an important technique for 
achieving some degree of software quality. It 
accounts for anything between 50 - 75% of the 
development cost (Hailpern & Santhanarn, 2002). 
The three main types of activities associated with 
software testing are: (1) test case generation, (2) 
test execution involving the use of test cases with 

the software under test (SUT) and (3) evaluation 
of test results. A key task associated with test case 
generation is obtaining an effective test set. The 
existence and ease of use of a test oracle is a key 
issue associated with the evaluation of test results. 
Owing to the immense input space, exhaustive 
testing is impossible. Thus, test case generation 
ensuring their adequacy as well their effectiveness 
in detecting defects in the software is important. 

ABSTRACT

Software testing is primarily a technique for achieving some degree of software quality and to gain 
consumer	confidence.	It	accounts	for	50%	-75%	of	development	cost.	Test	case	design	supports	effective	
testing	but	is	still	a	human	centered	and	labour-intensive	task.	The	Unified	Modelling	language	(UML) 
is	the	de-facto	industrial	standard	for	specifying	software	system	and	techniques	for	automatic	test	case	
generation from UML models are very much needed. While extensive research has explored the use of 
meta-heuristics	in	structural	testing,	few	have	involved	its	use	in	functional	testing,	particularly	with	
respect to UML.	This	chapter	details	an	approach	that	incorporates	an	anti-Ant	Colony	Optimisation	
algorithm for the automatic generation of test scenarios directly from UML Activity Diagrams, thus 
providing	a	seamless	progression	 from	design	 to	generation	of	 test	scenarios.	Owing	 to	 its	anti-ant	
behaviour,	the	approach	generates	non-redundant	test	scenarios.

DOI: 10.4018/978-1-60566-758-4.ch012



234

Computational Intelligence for Functional Testing

This is because testing the SUT with an effec-
tive test set will imply its correctness over all 
possible inputs.

Existing approaches for test case design1 are 
categorized as black-box, involving the use of 
some form of specifications, or white-box, where 
test cases are derived from the logic of the imple-
mented program. Test case generation in black 
box testing typically involves exercising a set of 
rules and procedures found in methods such as 
equivalence class partitioning and cause-effect 
graphs on the input domain whereas in white box 
testing it will typically involved finding test data 
which will execute a specific, yet to be executed, 
element of the program such as a statement, branch 
or path. In order to reduce cost, labour and time 
as well as to improve the quality of the software, 
any extensive testing would require the automa-
tion of the testing process. However, the current 
status with test automation is that it primarily 
deals with the automatic execution of test inputs, 
code instrumentation and coverage measurements. 
While there are many available commercial test 
execution tools, few if any of these specifically 
address the issue of test case design. A formal 
specification is required for any significant auto-
mation in black-box test case generation. The task 
of test case design is still largely labour-intensive 
and hence costly and its automation is still very 
much in its infancy (McMinn, 2004).

Test cases created and selected on the basis 
of test adequacy criteria are considered to be 
more effective in discovering faults in a given 
SUT. Given a testing criterion (e.g. execution of 
a specific statement in the program), the task in 
test case generation is to find an input that will 
satisfy this criterion. However, it may not be pos-
sible to determine whether such an input exists. 
Given limited resources, the application of meta-
heuristic techniques to the problem of automatic 
test case generation is a promising approach that 
will provide near-optimal solutions. Lam, Robey, 
& Li (2003) presented a survey for the application 
of Artificial Intelligence (AI)/meta-heuristics in 

software testing. McMinn (2004) in a compre-
hensive survey also presented similar findings, 
showing that the focus of most existing work in 
search based software testing involved the use 
of genetic algorithms (GA) and concentrated on 
structural testing and little has been done to ad-
dress functional testing. GAs have also been used 
in temporal behaviour testing and the SEMINAL 
Network (Harman & Jones, 2001) has stated that 
in comparisons with purely random test data gen-
eration techniques, approaches incorporating GAs 
have shown substantial improvements. Other AI 
techniques used for test data generation included 
Ant Colony Optimisation (ACO) (Li & Lam, 
2005a; Lam, Xiao, & Li, 2007), the AI planner 
approach (Howe, Mayrhauser, & Mraz, 1997) 
and Simulated Annealing (SA) (Tracey, Clark, 
Mander, & McDermid, 2002). Some previous 
work involving the application of meta-heuristics 
for functional testing involved the work of Jones, 
Sthamer, & Eyres (1995) using a Z specification 
and Tracey (2000) who tested the conformance 
of a Pascal program to its specification using SA 
and GA.

Modelling is a common approach for speci-
fying the behaviour of a system. The Unified 
Modelling language (UML) is a visual modelling 
language that can be used to specify, construct, 
visualise and document the software artefacts of a 
system. It is the de-facto industrial standard, and 
increasingly software developers are using UML 
and its associated modelling tools for requirements 
elicitation, design and implementation of software 
systems. The advantage of UML is that it is power-
ful enough to specify a software system’s models 
visually and efficiently. However, as diagrams, its 
disadvantage lies in its lack of a formal semantics 
and it is difficult to apply meta-heuristic techniques 
directly on UML models for test case generation. 
Given that the UML is increasingly used for 
modelling software systems, it is important that 
tools are developed to support automatic test case 
generation directly from these graphical design 
artefacts. Existing attempts include UMLAUT 



 

 

24 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/computational-intelligence-functional-

testing/36450

Related Content

Fostering Networked Business Operations: A Framework for B2B Electronic Intermediary

Development
Christoph Pflügler (2012). International Journal of Intelligent Information Technologies (pp. 31-58).

www.irma-international.org/article/fostering-networked-business-operations/66871

Low-Cost Internet of Things Platform for Epilepsy Monitoring Using Real-Time

Electroencephalogram
Manoj Kumar Sharma, M. Shamim Kaiserand Kanad Ray (2022). International Journal of Ambient

Computing and Intelligence (pp. 1-14).

www.irma-international.org/article/low-cost-internet-of-things-platform-for-epilepsy-monitoring-using-real-time-

electroencephalogram/300791

A Transactions Pattern for Structuring Unstructured Corporate Information in Enterprise

Applications
Simon Polovinaand Richard Hill (2009). International Journal of Intelligent Information Technologies (pp.

33-47).

www.irma-international.org/article/transactions-pattern-structuring-unstructured-corporate/2450

Issues for the Evaluation of Ambient Displays
Xiaobin Shen, Andrew Vande Moere, Peter Eadesand Seok-Hee Hong (2009). International Journal of

Ambient Computing and Intelligence (pp. 59-69).

www.irma-international.org/article/issues-evaluation-ambient-displays/3880

Critical Analysis of Emerging and Disruptive Digital Technologies in an Era of Artificial

Intelligence (AI)
José G. Vargas-Hernandez, Selene Castañeda-Burciaga, Omar A. Guirette-Barbosaand Omar C. Vargas-

Gonzàlez (2024). Generative AI and Multifactor Productivity in Business (pp. 1-21).

www.irma-international.org/chapter/critical-analysis-of-emerging-and-disruptive-digital-technologies-in-an-era-of-artificial-

intelligence-ai/345464

http://www.igi-global.com/chapter/computational-intelligence-functional-testing/36450
http://www.igi-global.com/chapter/computational-intelligence-functional-testing/36450
http://www.irma-international.org/article/fostering-networked-business-operations/66871
http://www.irma-international.org/article/low-cost-internet-of-things-platform-for-epilepsy-monitoring-using-real-time-electroencephalogram/300791
http://www.irma-international.org/article/low-cost-internet-of-things-platform-for-epilepsy-monitoring-using-real-time-electroencephalogram/300791
http://www.irma-international.org/article/transactions-pattern-structuring-unstructured-corporate/2450
http://www.irma-international.org/article/issues-evaluation-ambient-displays/3880
http://www.irma-international.org/chapter/critical-analysis-of-emerging-and-disruptive-digital-technologies-in-an-era-of-artificial-intelligence-ai/345464
http://www.irma-international.org/chapter/critical-analysis-of-emerging-and-disruptive-digital-technologies-in-an-era-of-artificial-intelligence-ai/345464

