
218

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

Constraint-Based Techniques 
for Software Testing

Nikolai Kosmatov
CEA	LIST,	Software	Safety	Laboratory,	France

INTRODuCTION

Artificial intelligence (AI) techniques are success-
fully applied in various phases of software devel-
opment life cycle. One of the most significant and 
innovative AI applications is using constraint-based 
techniques for automation of software testing.

Testing is nowadays the primary way to improve 
the reliability of software. Software testing accounts 
for about 50% of the total cost of software devel-

opment (Ramler & Wolfmaier, 2006). Automated 
testing is aimed at reducing this cost. The increasing 
demand has motivated much research on automated 
software testing. Constraint solving techniques are 
commonly used in software testing since 1990’s. 
They were applied in the development of several 
automatic test generation tools.

The underlying idea of constraint-based test 
generators is to translate the program under test, or 
its model, and the test criterion, or the test objective, 
into constraints. Constraint solving allows then to 

ABSTRACT

In	this	chapter,	the	authors	discuss	some	innovative	applications	of	artificial	intelligence	techniques	to	
software engineering, in particular, to automatic test generation. Automatic testing tools translate the 
program	under	test,	or	its	model,	and	the	test	criterion,	or	the	test	objective,	into	constraints.	Constraint	
solving	allows	then	to	find	a	solution	of	the	constraint	solving	problem	and	to	obtain	test	data.	The	au-
thors focus on two particular applications: model-based	testing	as	an	example	of	black-box	testing,	and	
all-paths	test	generation	for	C	programs	as	a	white-box	testing	strategy.	Each	application	is	illustrated	
by	a	running	example	showing	how	constraint-based	methods	allow	to	automatically	generate	test	data	
for	each	strategy.	They	also	give	an	overview	of	the	main	difficulties	of	constraint-based	software	testing	
and outline some directions for future research.

DOI: 10.4018/978-1-60566-758-4.ch011



219

Constraint-Based Techniques for Software Testing

find a solution of the constraint solving problem 
and to obtain test data. The constraint representa-
tion of the program, interaction with a constraint 
solver and the algorithm may be different in each 
particular tool and depend on its objectives and 
test coverage criteria.

While learning about constraint-based tech-
niques for the first time, we are often surprised 
to see that one constraint solver can so efficiently 
solve so different problems. For example, such as 
the famous SEND + MORE = MONEY puzzle 
(Apt, 2003), SUDOKU puzzles, systems of linear 
equations and many others, where a human would 
use quite different and sometimes very tricky meth-
ods. The intelligence of modern constraint solvers 
is not only in their ability to solve problems, but 
also in their ability to solve quite different kinds 
of problems. Of course, some solvers may be more 
adapted for specific kinds of problems.

In this chapter, we will discuss some innova-
tive applications of constraint-based techniques to 
software engineering, in particular, to automatic 
test generation. We will focus on two particular 
applications: model-based testing as an example 
of black-box testing, and all-paths test generation 
for C programs as a white-box testing strategy. 
Each application will be illustrated by a running 
example showing how constraint-based methods 
allow to automatically generate test data for each 
strategy. We will also mention the main difficulties 
of constraint-based software testing and outline 
some directions for future research.

Organization of the Chapter

The chapter is organized as follows. We start by a 
short background section on software testing and 
describe the most popular test coverage criteria. 
The section on model-based testing contains an 
overview of the approach, an example of for-
mal model and application of AI techniques to 
this example. Next, the section on all-paths test 
generation presents the generation method, its 
advantages and possible applications. We finish 

by a brief description of future research directions 
and a conclusion.

BACKGROuND

The classical book The Art of Software Testing by 
G. J. Myers defines software testing as “the process 
of executing a program with the intent of finding 
errors” (Myers, 1979, p.5). In modern software 
engineering, various testing strategies may be 
applied depending on the software development 
process, software requirements and test objectives. 
In black-box	testing strategies, the software under 
test is considered as a black box, that is, test data 
are derived without any knowledge of the code 
or internal structure of the program. On the other 
hand, in white-box	 testing, the implementation 
code is examined for designing tests. Different 
testing strategies may be used together for im-
proved software development. For example, one 
may first use black-box testing techniques for 
functional testing aimed at finding errors in the 
functionality of the software. Second, white-box 
testing may be applied to measure the test cover-
age of the implementation code by the executed 
tests, and to improve it by adding more tests for 
non-covered parts.

Significant progress in software testing was 
done by applications of artificial intelligence 
techniques. Manual testing being very laborious 
and expensive, automation of software testing 
was the focus of much research since 1970’s. 
Symbolic execution was first used in software 
testing in 1976 by L. A. Clarke (1976) and J. C. 
King (1976). Automatic constraint-based testing 
was proposed by R. A. DeMilli and A. J. Offutt 
(1991). Since then, constraint-based techniques 
were applied for development of many automatic 
test generation tools. Like in manual testing, vari-
ous test coverage (test selection) criteria may be 
used to control automatic test generation and to 
evaluate the coverage of a given set of test cases. 
The possibility to express such criteria in con-



 

 

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/constraint-based-techniques-software-

testing/36449

Related Content

Deontic Logic Based Ontology Alignment Technique for E-Learning
Lazarus Jegatha Deborah, Ramachandran Baskaranand Arputharaj Kannan (2012). International Journal

of Intelligent Information Technologies (pp. 56-72).

www.irma-international.org/article/deontic-logic-based-ontology-alignment/69390

IoT-Based Agri-Safety Model: Mechanised Agricultural Fencing
Suchismita Satapathy (2021). Smart Agricultural Services Using Deep Learning, Big Data, and IoT (pp.

128-138).

www.irma-international.org/chapter/iot-based-agri-safety-model/264962

Learning-Based Planning
Sergio Jiménez Celorrioand Tomás de la Rosa Turbides (2009). Encyclopedia of Artificial Intelligence (pp.

1024-1028).

www.irma-international.org/chapter/learning-based-planning/10368

Building Data Warehouses Using Automation
Nayem Rahmanand Dale Rutz (2015). International Journal of Intelligent Information Technologies (pp. 1-

22).

www.irma-international.org/article/building-data-warehouses-using-automation/135903

Improving Live Augmented Reality With Neural Configuration Adaptation
Ning Chen, Sheng Zhangand Sang Lu Lu (2024). Principles and Applications of Adaptive Artificial

Intelligence (pp. 151-178).

www.irma-international.org/chapter/improving-live-augmented-reality-with-neural-configuration-adaptation/337692

http://www.igi-global.com/chapter/constraint-based-techniques-software-testing/36449
http://www.igi-global.com/chapter/constraint-based-techniques-software-testing/36449
http://www.irma-international.org/article/deontic-logic-based-ontology-alignment/69390
http://www.irma-international.org/chapter/iot-based-agri-safety-model/264962
http://www.irma-international.org/chapter/learning-based-planning/10368
http://www.irma-international.org/article/building-data-warehouses-using-automation/135903
http://www.irma-international.org/chapter/improving-live-augmented-reality-with-neural-configuration-adaptation/337692

