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INTRODuCTION

Software project planning is notoriously unreliable. 
Attempts to predict the effort, cost and quality of 
software projects have foundered for many rea-
sons. These include the amount of effort involved 
in collecting metrics, the lack of crucial data, the 
subjective nature of some of the variables involved 
and the complex interaction of the many variables 

which can affect a software project. In this chapter 
we introduce Bayesian Networks (BNs) and show 
how they can overcome these problems.

We cover sufficient BN theory to enable the 
reader to construct and use BN models using a suit-
able tool, such as AgenaRisk (Agena Ltd. 2008). 
From this readers will acquire an appreciation for 
the ease with which complex, yet intuitive, statistical 
models can be built. The statistical nature of BN 
models automatically enables them to deal with the 
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uncertainty and risk that is inherent in all but the 
most trivial software projects.

Two distinctive types of model will be pre-
sented. The first group of models are primarily 
causal in nature. These take results from empirical 
software engineering, and using expert domain 
knowledge, construct a network of causal influ-
ences. Known evidence from a particular project 
is entered into these models in order to predict 
desired outcomes such as cost, effort or quality. 
Alternatively, desired outcomes can be entered and 
the models provide the range of inputs required 
to support those outcomes. In this way, the same 
models provide both decision support and trade 
off analysis.

The second group of models are primarily 
parameter learning models for use in iterative or 
agile environments. By parameter learning we 
mean that the model learns the uncertain values 
of the parameters as a project progresses and uses 
these to predict what might happen next. They take 
advantage of knowledge gained in one or more 
iterations of the software development process to 
inform predictions of later iterations. We will show 
how remarkably succinct such models can be and 
how quickly they can learn from their environment 
based on very little information.

BACKGROuND

Before we can describe BN software project 
models, it is worthwhile examining the problems 
that such models are trying to address and why 
it is that traditional approaches have proved so 
difficult. Then, by introducing the basics of BN 
theory, we will see how BN models address these 
shortcomings.

Cost and Quality Models

We can divide software process models into two 
broad categories: cost models and quality mod-
els. Cost models, as their name implies, aim to 

predict the cost of a software project. Since effort 
is normally one of the largest costs involved in a 
software project, we also take “cost models” to 
include effort prediction models. Similarly, since 
the “size” of a software project often has a direct 
bearing on the effort and cost involved, we also 
include project size models in this category. Qual-
ity models are concerned with predicting quality 
attributes such as mean time between failures, or 
defect counts.

Estimating the cost of software projects is 
notoriously hard. Molokken and Jorgensen (2003) 
performed a review of surveys of software effort 
estimation and found that the average cost overrun 
was of the order 30-40%. One of the most famous 
such surveys, the Standish Report (Standish Group 
International 1995) puts the mean cost overrun 
even higher, at 89%, although this report is not 
without its critics (Glass 2006). Software quality 
prediction, and in particular software defect predic-
tion, has been no more successful. Fenton and Neil 
(1999) have described the reasons for this failure. 
We briefly reproduce these here since they apply 
equally to both cost and quality models.

1.  Typical cost and quality models, such as 
COCOMO (Boehm 1981) and COQUALMO 
(Chulani & Boehm 1999) take one or two 
parameters which are fed into a simple alge-
braic formula and predict a fixed value for 
some desired cost or quality metric. Such 
parametric models therefore take no account 
of the inaccuracy in the measurement of their 
parameters, or the uncertainty surrounding 
their coefficients. They are therefore unable 
to attach any measure of risk to their predic-
tions. Changes in parameters and coefficients 
can be simulated in an ad-hoc fashion to try 
to address this, but this is not widely used 
and does not arise as a natural component 
of the base model.

2.  Parametric models cannot easily deal with 
missing or uncertain data. This is a major 
problem when constructing software process 
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