
1

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

Software Project and
Quality Modelling Using

Bayesian Networks
Norman Fenton

Queen Mary, University of London, United Kingdom

Peter Hearty
Queen Mary, University of London, United Kingdom

Martin Neil
Queen Mary, University of London, United Kingdom

Łukasz Radliński
Queen	Mary,	University	of	London,	United	Kingdom,	and	University	of	Szczecin,	Poland

INTRODuCTION

Software project planning is notoriously unreliable.
Attempts to predict the effort, cost and quality of
software projects have foundered for many rea-
sons. These include the amount of effort involved
in collecting metrics, the lack of crucial data, the
subjective nature of some of the variables involved
and the complex interaction of the many variables

which can affect a software project. In this chapter
we introduce Bayesian Networks (BNs) and show
how they can overcome these problems.

We cover sufficient BN theory to enable the
reader to construct and use BN models using a suit-
able tool, such as AgenaRisk (Agena Ltd. 2008).
From this readers will acquire an appreciation for
the ease with which complex, yet intuitive, statistical
models can be built. The statistical nature of BN
models automatically enables them to deal with the

ABSTRACT

This chapter provides an introduction to the use of Bayesian Network (BN) models in Software Engineering.
A short overview of the theory of BNs is included, together with an explanation of why BNs are ideally
suited to dealing with the characteristics and shortcomings of typical software development environments.
This theory is supplemented and illustrated using real world models that illustrate the advantages of
BNs in dealing with uncertainty, causal reasoning and learning in the presence of limited data.

DOI: 10.4018/978-1-60566-758-4.ch001

2

Software Project and Quality Modelling Using Bayesian Networks

uncertainty and risk that is inherent in all but the
most trivial software projects.

Two distinctive types of model will be pre-
sented. The first group of models are primarily
causal in nature. These take results from empirical
software engineering, and using expert domain
knowledge, construct a network of causal influ-
ences. Known evidence from a particular project
is entered into these models in order to predict
desired outcomes such as cost, effort or quality.
Alternatively, desired outcomes can be entered and
the models provide the range of inputs required
to support those outcomes. In this way, the same
models provide both decision support and trade
off analysis.

The second group of models are primarily
parameter learning models for use in iterative or
agile environments. By parameter learning we
mean that the model learns the uncertain values
of the parameters as a project progresses and uses
these to predict what might happen next. They take
advantage of knowledge gained in one or more
iterations of the software development process to
inform predictions of later iterations. We will show
how remarkably succinct such models can be and
how quickly they can learn from their environment
based on very little information.

BACKGROuND

Before we can describe BN software project
models, it is worthwhile examining the problems
that such models are trying to address and why
it is that traditional approaches have proved so
difficult. Then, by introducing the basics of BN
theory, we will see how BN models address these
shortcomings.

Cost and Quality Models

We can divide software process models into two
broad categories: cost models and quality mod-
els. Cost models, as their name implies, aim to

predict the cost of a software project. Since effort
is normally one of the largest costs involved in a
software project, we also take “cost models” to
include effort prediction models. Similarly, since
the “size” of a software project often has a direct
bearing on the effort and cost involved, we also
include project size models in this category. Qual-
ity models are concerned with predicting quality
attributes such as mean time between failures, or
defect counts.

Estimating the cost of software projects is
notoriously hard. Molokken and Jorgensen (2003)
performed a review of surveys of software effort
estimation and found that the average cost overrun
was of the order 30-40%. One of the most famous
such surveys, the Standish Report (Standish Group
International 1995) puts the mean cost overrun
even higher, at 89%, although this report is not
without its critics (Glass 2006). Software quality
prediction, and in particular software defect predic-
tion, has been no more successful. Fenton and Neil
(1999) have described the reasons for this failure.
We briefly reproduce these here since they apply
equally to both cost and quality models.

1. Typical cost and quality models, such as
COCOMO (Boehm 1981) and COQUALMO
(Chulani & Boehm 1999) take one or two
parameters which are fed into a simple alge-
braic formula and predict a fixed value for
some desired cost or quality metric. Such
parametric models therefore take no account
of the inaccuracy in the measurement of their
parameters, or the uncertainty surrounding
their coefficients. They are therefore unable
to attach any measure of risk to their predic-
tions. Changes in parameters and coefficients
can be simulated in an ad-hoc fashion to try
to address this, but this is not widely used
and does not arise as a natural component
of the base model.

2. Parametric models cannot easily deal with
missing or uncertain data. This is a major
problem when constructing software process

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-project-quality-modelling-using/36439

Related Content

Re-Shaping the World of Cyber Insurance: A New Era of AI in the Cyber World
Mariam Alhassaniand Moatsum Alawida (2026). Cybersecurity Insurance Frameworks and Innovations in

the AI Era (pp. 1-20).

www.irma-international.org/chapter/re-shaping-the-world-of-cyber-insurance/384185

Fostering Networked Business Operations: A Framework for B2B Electronic Intermediary

Development
Christoph Pflügler (2012). International Journal of Intelligent Information Technologies (pp. 31-58).

www.irma-international.org/article/fostering-networked-business-operations/66871

AI, Ethics, and Hate Speech: A Collaborative Approach to Social Media Influence
Chalamalla Venkateshwarlu (2025). Ethical AI Solutions for Addressing Social Media Influence and Hate

Speech (pp. 409-432).

www.irma-international.org/chapter/ai-ethics-and-hate-speech/371746

Social Structure Based Design Patterns for Agent-Oriented Software Engineering
Manuel Kolp, Stéphane Faulknerand Yves Wautelet (2008). International Journal of Intelligent Information

Technologies (pp. 1-23).

www.irma-international.org/article/social-structure-based-design-patterns/2432

Deep Learning-Based Object Detection in Diverse Weather Conditions
 Ravinder M. (7a9dc130-9a06-492c-81be-52280e1267e9, Arunima Jaiswaland Shivani Gulati (2022).

International Journal of Intelligent Information Technologies (pp. 1-14).

www.irma-international.org/article/deep-learning-based-object-detection-in-diverse-weather-conditions/296236

http://www.igi-global.com/chapter/software-project-quality-modelling-using/36439
http://www.irma-international.org/chapter/re-shaping-the-world-of-cyber-insurance/384185
http://www.irma-international.org/article/fostering-networked-business-operations/66871
http://www.irma-international.org/chapter/ai-ethics-and-hate-speech/371746
http://www.irma-international.org/article/social-structure-based-design-patterns/2432
http://www.irma-international.org/article/deep-learning-based-object-detection-in-diverse-weather-conditions/296236

