
 393

Chapter XVII
Modeling and Programming
with Commitment Rules in

Agent Factory
Rem Collier

University College Dublin, Ireland

Gregory M.P. O’Hare
University College Dublin, Ireland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Agent-Oriented Programming (AOP) is a relatively new programming paradigm, proposed by Yoav
Shoham, which views software systems as consisting of a set of agents that interact with one another
to solve problems beyond their individual capabilities. Since the inception of the paradigm, a number
of AOP languages have been proposed. This chapter focuses on one such language, the Agent Factory
Agent Programming Language (AFAPL), a practical rule-based language that has been applied to a
wide range of problem domains including robotics, virtual and mixed reality environments, and mobile
computing. AFAPL is placed in context through a general introduction to the state-of-the-art in AOP.
The chapter finishes with a discussion of some future trends for AOP and some concluding remarks.

IntroductIon

Agent-Oriented Programming (AOP) is a rela-
tively new programming paradigm introduced by
Yoav Shoham (1993) in which software systems
are viewed as consisting of a set of agents that
interact with one another to solve problems that

are beyond their individual capabilities. More
specifically, agents are viewed as high-level
autonomous software entities that encapsulate
a set of capabilities and whose internal state is
comprised of a set of mental components such as
beliefs, capabilities, choices and commitments.
This view of agents as mentalistic entities is a

394

Modeling and Programming with Commitment Rules in Agent Factory

common perspective within multi-agent systems
research and underpins many of the most promi-
nent agent theories (Cohen & Levesque, 1990; Rao
& Georgeff, 1991; Wooldridge, 2000). These theo-
ries model the internal decision-making process
of an agent in terms of the interplay between the
constituent components of the underlying mental
state. Their objective is to define how an agent
is able to act in a rational goal-directed manner
and to tease out various desirable properties that
emerge from that action. Thus, the objective of
AOP is to present a framework for developing
a new class of programming languages that are
derived from these theories.

This view of programs that consist of com-
ponents whose state is defined by a set of mental
qualities and in which computation is realized
through speech act based message passing is not
unique to Shoham. John McCarthy, who is widely
acknowledged as being one of the first to associate
mental qualities with machines (McCarthy, 1979)
had, as early as 1990, written an draft proposal
for a programming language he entitled Elephant
2000 (McCarthy, 1992). That said, McCarthy
recognized at the time that his language could be
implemented, and to this day, no implementation
of Elephant 2000 exists (McCarthy, 2007). In
contrast, a number of AOP languages have been
proposed, implemented and successfully used to
build a range of agent-oriented applications.

This chapter focuses on one such AOP lan-
guage, entitled the Agent Factory Agent Program-
ming Language (AFAPL) (Collier, 2001; Ross &
Collier & O’Hare, 2004; Collier & Ross & O’Hare,
2005). AFAPL has its origins as part of a larger
software engineering framework entitled Agent
Factory (O’Hare, 1996; Collier, 1996; O’Hare &
Collier & Conlon & Abbas, 1998; Collier, 2001;
Collier & O’Hare & Lowen & Rooney, 2003).
Both AFAPL and the associated framework
have been designed specifically to support the
fabrication of agent-oriented applications, and
have been used extensively in the development of
a number of prototype systems in areas such as:

robotics (O’Hare & Duffy & Collier & Rooney &
O’Donoghue, 1999; Dragone & Holz & O’Hare,
2007), mobile computing (O’Hare & O’Grady,
2003; Muldoon & O’Hare & Phelan & Strahan &
Collier, 2003), virtual and mixed reality (Duffy
& O’Hare & Campbell & Stafford & O’Grady,
2005), wireless sensor networks (Marsh & Tynan
& O’Kane & O’Hare, 2004; O’Hare & O’Grady
& Marsh & Ruzzelli & Tynan, 2006) and infor-
mation retrieval (Peng & Collier & Mur & Lillis
& Toolan & Dunnion, 2004; Lillis & Collier &
Toolan & Dunnion, 2007).

The remainder of this chapter starts with an
overview of Agent-Oriented Programming. This
is followed by a general overview of the Agent
Factory framework. The next section presents
details of AFAPL, and after that some of the tools
that have been developed to support its use are
discussed. The penultimate section, discusses
future trends in this area, and finally, some con-
cluding remarks are presented.

Agent-orIented progrAmmIng

In his seminal paper, Shoham (1993) introduces
the concept of Agent-Oriented Programming as
apecialisation of Object-Oriented Programming
(OOP). As is highlighted in Figure 1, the core
computational unit becomes an agent rather than
an object, and the state is constrained to mental
components. The second significant restriction
that is applied to AOP is the requirement that
the only valid types of message are speech acts.
Speech act theory (Searle, 1969) is a pragmatic
theory of how humans communicate with one
another, and has become the defacto standard
within the multi-agent systems research commu-
nity (Wooldridge & Jennings, 1995). Ultimately,
the adoption of speech act theory has led to the
specification of various Agent Communication
Languages (ACLs), such as Knowledge Query
Meta Language (KQML) (Finin & Labrou &
Mayfield, 1997) and Foundation for Intelligent

27 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/modeling-programming-commitment-rules-

agent/35868

Related Content

An Example-Based Generator of XSLT Programs
José Paulo Lealand Ricardo Queirós (2013). Innovations in XML Applications and Metadata Management:

Advancing Technologies (pp. 1-20).

www.irma-international.org/chapter/example-based-generator-xslt-programs/73170

Issues in Personalized Access to Multi-Version XML Documents
Fabio Grandi, Federica Mandreoliand Riccardo Martoglia (2009). Open and Novel Issues in XML Database

Applications: Future Directions and Advanced Technologies (pp. 199-230).

www.irma-international.org/chapter/issues-personalized-access-multi-version/27783

XML Compression
Chin-Wan Chung, Myung-Jae Parkand Jihyun Lee (2010). Advanced Applications and Structures in XML

Processing: Label Streams, Semantics Utilization and Data Query Technologies (pp. 47-65).

www.irma-international.org/chapter/xml-compression/41499

XML Schema Evolution and Versioning: Current Approaches and Future Trends
Giovanna Guerriniand Marco Mesiti (2009). Open and Novel Issues in XML Database Applications: Future

Directions and Advanced Technologies (pp. 66-87).

www.irma-international.org/chapter/xml-schema-evolution-versioning/27777

Continuous and Progressive XML Query Processing and its Applications
Stéphane Bressan, Wee Hyong Tokand Xue Zhao (2009). Open and Novel Issues in XML Database

Applications: Future Directions and Advanced Technologies (pp. 181-197).

www.irma-international.org/chapter/continuous-progressive-xml-query-processing/27782

http://www.igi-global.com/chapter/modeling-programming-commitment-rules-agent/35868
http://www.igi-global.com/chapter/modeling-programming-commitment-rules-agent/35868
http://www.irma-international.org/chapter/example-based-generator-xslt-programs/73170
http://www.irma-international.org/chapter/issues-personalized-access-multi-version/27783
http://www.irma-international.org/chapter/xml-compression/41499
http://www.irma-international.org/chapter/xml-schema-evolution-versioning/27777
http://www.irma-international.org/chapter/continuous-progressive-xml-query-processing/27782

