
 195

Chapter IX
A Logic Programming
Perspective on Rules

Leon Sterling
University of Melbourne, Australia

Kuldar Taveter
Tallinn University of Technology, Estonia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Logic programming emerged from the realization that expressing knowledge in an appropriate clausal
form in logic was akin to programming. The basic construct of a logic program can be viewed as a
rule. This chapter will review rules from a logic programming perspective with an eye to developments
within modern rule languages. It mentions rule interpreters, hybrid computing, interaction with the
Web, and agents. An extended example is given concerning rule-based modelling and simulation of
traffic at airports.

1. bAcKGrOUND

Rules have a long history in mathematics and
computing, from inference rules such as modus
ponens in logic, rewrite rules in grammar, to
rules as norms or guidelines. More recently, rules
have been seen as a key part of computing in ap-
plications such as expert systems and electronic
commerce. There is a natural tendency to reinvent
the wheel. To try to minimise reinvention in the
case of rules, it is worth being aware of some of

the developments that rules have gone through
over the past forty years. It is in that spirit that
this chapter is being written.

The discussion is focussed on how rules are
used in logic programming, a computing para-
digm that is arguably the most rule-based. The
development of logic programming occurred in
the intersection of automated theorem proving,
artificial intelligence and programming lan-
guages. The most successful logic programming
language has been Prolog (Clocksin & Mellish,

196

A Logic Programming Perspective on Rules

1981), (Sterling & Shapiro, 1994). We claim that
experience with using Prolog has influenced cur-
rent thinking about rules.

The roots of logic programming lie in the
resolution rule of inference developed by Alan
Robinson (Robinson, 1965). Robinson’s research
aimed to improve the behaviour of automated
theorem provers by developing, in Robinson’s
words, a “machine-oriented rule of inference”.
A key component of Robinson’s approach was
two-way matching of logical terms, which became
known as unification.

Resolution was regarded as a promising ap-
proach for achieving artificial intelligence. Situ-
ations could be expressed with logical formulae,
problems expressed as a theorem to be proved from
the logic describing the situation, and resolution
used as the mechanism for machine reasoning.
Unfortunately, resolution did not live up to the
hype that it could be a universal mechanism for
intelligence. Many artificial intelligence research-
ers abandoned logic-based rule approaches.

Several researchers, instead of abandoning
resolution, tried to understand when resolution
worked well and when it did not. One idea to
improve the performance of resolution was to
restrict the form of logical axioms to be used in
theorem proving. The most successful restriction
was using Horn clauses. Logic programming
emerged in the early 1970s from the confluence
of the work by Bob Kowalski working on restric-
tions to resolution-based theorem provers and the
work by Alain Colmerauer on using grammar
rules in logic for parsing sentences in natural
language. The history is described by each of
the main protagonists in (Kowalski, 1988) and
(Colmerauer & Roussel, 2000) and separately by
Jacques Cohen (Cohen, 1988).

The programming in logic programming
came from the observation that the process of
restricting how logic was expressed was akin to
programming. The relevance for this book is that
structuring logic is effectively structuring rules
and the way that rules are expressed significantly

affects their computational efficacy. The pro-
gramming aspect of logic programming is not
directly pursued in this chapter, but the reader
is referred to (Kowalski, 1979) and (Sterling &
Shapiro, 1994).

In the 1980s there was an explosion of interest
in using artificial intelligence in practical applica-
tions. Expert systems were a key technology and
were often rule-based. Expert system shells were
developed and commercialised. The shells allowed
developers to write their own rules. The interpreter
contained within the shell was essentially either
backward chaining from goals to facts or forward
chaining from data to conclusions.

More recently rules have been studied as an
entity in their own right. As the Internet has
transformed the computing landscape, rules have
been integrated at various levels. Three examples
are as application development constructs for
electronic commerce applications, for describing
Web content, and for facilitating search. Taveter &
Wagner (2001) identified the three most basic types
of rules as integrity constraints (also called con-
straint rules or integrity rules), derivation rules,
and reaction rules (also called stimulus-response
rules, action rules, event-condition-action rules,
or automation rules).

This chapter is organised as follows. Section
2 gives the basic conception of logic program-
ming rules, as from the first section of (Sterling
& Shapiro, 1994). Logic programming rules
most typically are viewed as derivation rules.
The execution mechanism of Prolog is backward
chaining, applying rules to the goal that needs
to be achieved. Section 3 looks at using rules to
achieve alternative control mechanisms such as
forward chaining. The notion of a rule interpreter
is introduced. Section 4 looks at how constraints
and complex objects have been integrated into
logic programming systems. A major trigger for
the current interest in business rules has been
the Web and the possibilities of electronic com-
merce. Section 5 looks at one attempt to integrate
logic programming rules with the Web. Section

17 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/logic-programming-perspective-rules/35860

Related Content

Towards a UML Profile for Building on Top of Running Software
Isabelle Mirbeland Violaine de Rivieres (2003). UML and the Unified Process (pp. 358-374).

www.irma-international.org/chapter/towards-uml-profile-building-top/30551

Distributed Business Rules within Service-Centric Systems
Florian Rosenberg, Anton Michlmayr, Christoph Nagland Schahram Dustdar (2009). Handbook of

Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches (pp.

448-470).

www.irma-international.org/chapter/distributed-business-rules-within-service/35870

A Logic Programming Perspective on Rules
Leon Sterlingand Kuldar Taveter (2009). Handbook of Research on Emerging Rule-Based Languages and

Technologies: Open Solutions and Approaches (pp. 195-213).

www.irma-international.org/chapter/logic-programming-perspective-rules/35860

Managing Research Data at the University of Porto: Requirements, Technologies, and Services
João Rocha da Silva, Cristina Ribeiroand João Correia Lopes (2013). Innovations in XML Applications and

Metadata Management: Advancing Technologies (pp. 174-197).

www.irma-international.org/chapter/managing-research-data-university-porto/73179

Developing Software Testing Ontology in UML for a Software Growth Environment of Web-

Based Applications
Hong Zhuand Qingning Huo (2005). Software Evolution with UML and XML (pp. 263-295).

www.irma-international.org/chapter/developing-software-testing-ontology-uml/29616

http://www.igi-global.com/chapter/logic-programming-perspective-rules/35860
http://www.irma-international.org/chapter/towards-uml-profile-building-top/30551
http://www.irma-international.org/chapter/distributed-business-rules-within-service/35870
http://www.irma-international.org/chapter/logic-programming-perspective-rules/35860
http://www.irma-international.org/chapter/managing-research-data-university-porto/73179
http://www.irma-international.org/chapter/developing-software-testing-ontology-uml/29616

