Easing the Integration and Communication in Ambient Intelligence

Javier Gómez, Universidad Autónoma de Madrid, Spain
Germán Montoro, Universidad Autónoma de Madrid, Spain
Pablo A. Haya, Universidad Autónoma de Madrid, Spain
Manuel García-Herranz, Universidad Autónoma de Madrid, Spain
Xavier Alamán, Universidad Autónoma de Madrid, Spain

ABSTRACT

In this article we present a middleware developed for Ambient Intelligence environments. The proposed model is based on the blackboard metaphor, which is logically centralized but physically distributed. Although it is based on a data-oriented model, some extra services have been added to this middle layer to improve the functionality of the modules that employ it. The system has been developed and tested in a real Ambient Intelligence environment. [Article copies are available for purchase from InfoSci-on-Demand.com]

Keywords: Ambient Intelligence; Blackboard Systems; Data Model; Middleware; Ubiquitous Computing; User Interface

INTRODUCTION

The Ubiquitous Computing term was coined by Mark Weiser in 1991 (Weiser, 1991). From that moment on, many problems and opportunities have arisen from that vision of a world rich in information and interaction. Ambient intelligence environments (also called intelligent environments) are one of the fields where Ubiquitous Computing can be naturally applied. We can define an
active environment as a space limited by physical barriers, which is capable to sense and interact with its inhabitants. The definition leads to the necessity of some kind of physical infrastructure for sensing and acting into the real world. However, as we will show below, these environments present some particular problems beyond hardware issues. For instance, the environment configuration changes dynamically and client applications should be notified of these changes. Thus, a software infrastructure is also needed to solve these problems.

The approach that we present in this article tries to solve these issues, making easier the developing task and the interaction among applications. For this, it employs a common, normalized and formalized definition of the reality. This definition, and the information that it stores, should be accessible and shared by clients and applications.

Moreover, some extra features have been added to the system to provide additional services, such as an historical registry, which shows all the activity carried out by the system or a rule-based service, which changes the behaviour of the environment under some circumstances.

Another interesting feature is one that adds a description of the representation of the elements that compose the environment. This feature facilitates the definition and development of interfaces to interact with the environment. User Interfaces are becoming an important subject in the Ambient Intelligence field, because computers usually keep hidden from users and system services are obtained by means of context awareness interaction. Moreover, this interaction must be adapted to the task, the environment, its occupants and the available resources (Paterno & Santoro, 2002; Rayner et al., 2001). The integration of this description with the rest of the elements of the model helps to fulfil this task.

Finally, as an important aspect of our development, this model and its services have been tested in a real intelligent environment. This article is organized as follows: after a short motivation, the middleware layer is presented and described under three different points of view: from the data model point of view, then from the application model view and finally under the communication model point of view. Then the set of basic operations is explained and finally some additional integrated features are presented.

INTELLIGENT ENVIRONMENTS

Any intelligent environment is composed by a heterogeneous set of software and hardware components (Haya, et al. 2001). This involves some challenges:

- **Heterogeneous components:** They must be integrated and managed, which increases its complexity. Users may interact with the environment in many different ways (talking, gestures, touching, etc.),
Related Content

Comparison of Ten Agent-Oriented Methodologies
www.irma-international.org/chapter/comparison-ten-agent-oriented-methodologies/24347

Analytics for Noisy Unstructured Text Data I
www.irma-international.org/chapter/analytics-noisy-unstructured-text-data/10232

Contrasting Correlation Coefficient with Distance Measure in Interval Valued Intuitionistic Trapezoidal Fuzzy MAGDM Problems

A Framework of Statistical and Visualization Techniques for Missing Data Analysis in Software Cost Estimation

CNS Tumor Prediction Using Gene Expression Data Part I
www.irma-international.org/chapter/cns-tumor-prediction-using-gene/10264