
1510 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Knowledge Pre-Processing:
A Generic Approach based on compiler

Function concepts
Tapati Bandopadhyay, ICFAI Business School, Bangalore, India; E-mail: chatterjee_tee@yahoo.com

Pradeep Kumar, ICFAI Business School, Gurgaon, India; E-mail: pkgarg@ibsdel.org

Anil Kumar Saini, USMS, GGSIP University, New Delhi, India; E-mail: aksaini@rediffmail.com

AbSTrAcT
Knowledge extraction from semi-structured or unstructured documents and texts
have become a significant research issue in today’s context when knowledge is
viewed as the crucial corporate asset and capturing tacit or implicit knowledge
and converting them into some reusable form have therefore become necessary. In
this paper, a concept called knowledge pre-processing is proposed, to adequately
exploit certain latent structured-ness in specific areas of the knowledge sources.
The concept uses the basic principles of compilers, namely the lexical and semantic
analyzers, parsers and thesaurus.

Keywords: Knowledge, Clustering, Pre-processing, Context Free language

1. INTrODUcTION
Knowledge pre-processing can make knowledge extraction processes faster and
more resource-efficient. The basic functions of a pre-compiler can be used as a
pre-processing unit, as analogous to the Oracle- pro*C kind of combinations. In
case of such pre-compilers like Pro*C with oracle, we see that the pre-compiler
primarily acts as a filter and sends the classified inputs to different processing
units or modules like a separate c compiler for processing the C programming
sections and an SQL compiler for processing the ‘exec SQL …” statements.
Similarly, if this concept gets applied in pre-processing knowledge elements for
creating re-usable knowledge repositories which can store integrated knowledge
elements across various sources, types and structures, the knowledge extraction,
capture, conversion/ translation(to the format acceptable to the repository) etc.
i.e. the later steps become easier and faster.

In fact, many of the knowledge elements which are generally viewed as ‘unstruc-
tured’ or ‘free-flowing texts’ have some degree of explicit structured information
for example embedded in their labels. Unfortunately, these already embedded
‘semi-structured’ information which can help any extraction module to do some
‘level 0’ or ‘pre-classification’, do not get adequately exploited if the whole
document along with the semi-structured part also is input at the beginning itself
to the extraction modules. For example, there can be limited amount of ‘pre-
classification’ information embedded or available in the document headers, mes-
sage headings, subject lines of letters or emails and so on. These, if adequately
processed by a knowledge preprocessor before entering into the actual extraction
phase, some classification information can already be made available through this
pre-processing, to the extraction modules.

Therefore, the benefits of a knowledge pre-processing unit to be placed before the
actual knowledge extraction and capture modules can be explained as follows:

• It can help the knowledge extraction modules, which are often extremely
resource-hungry and slow (due to less availability of such computational
resources), more efficient. The knowledge extraction modules tend to become
slow because of their unavoidable and extreme logical and processing com-
plexities. A pre-processed input can make the logic simpler to some extent.

• It also helps the knowledge extraction modules to exploit some amount of
structured information that remained embedded in part of unstructured docu-
ments like headings etc.

In this paper, we propose a generic model for knowledge pre-processor using the
concepts of compilers in programming languages.

However, the main difference between the two contexts (i.e. the programming
language executable code generation vs. knowledge pre-processing) is essentially
the fact that the output of the knowledge pre-processor is not any executable code
etc. but some structured information about the knowledge source that is being
input to a knowledge extraction module. The other significant difference which is
a basic one is the fact that input for a compiler is a source code file with a specific
programming language as using regular expressions and regular grammar, whereas
in case of a knowledge pre-processor the input will be free flowing text strings
for example as constructs in CFL(Context Free language).

There have already been some applications of compiler-related techniques for
discovering classification information from unstructured text, like topic searching
using lexical analysis, lexical chains etc. Here, our main purpose is NOT to extend
any of these techniques or even enter into the searching algorithms, pattern search
or thesaurus-based pattern matching algorithms which get applied to the entire
body of the messages/ documents i.e. the whole of the unstructured inputs.

On the contrary, in this paper, we are proposing the concept of using a pre-processor
based on similar concept like compilers, along with some explanations and examples
of its possible use and benefits. Towards this end, we have first discussed some
of the approaches for pattern discovery, subject identification, classification and
clustering of unstructured/ semi-structured documents. Then we take a clean-slate
approach with zero assumptions about the concept of knowledge pre-processing,
and develop a new generic model for doing the same. Therefore, the authors’
contribution starts from the section under heading “Generic model outline for
knowledge pre-processor” which explains the basic framework of the knowledge
pre-processor and its generic components, their roles and inter-relations.

2. UNSTrUcTUrED TExT hANDLING APPrOAchES
There is various research issues related to unstructured/ free-flowing text. The
issues range from highly theoretical, mathematical, logical and analytical dimen-
sions like discovering cohesions and relations between various sections of body
texts (e.g. paragraphs), discovering topics, searching for topics. Further issues
are related to the practical or implementations-specific side of the problem e.g.
storing the discovered/ searched information in a knowledge representation
format which is more accessible, understandable, easy to implement, and easily
retrievable to achieve the ultimate goal of re-usable knowledge repositories. These
issues translate down to specific research questions like: text segmentation, topic
tracking, topic detection, link detection, classification and clustering.

The background work for these issues have started since many years, starting from
the machine readable dictionary-based approaches by McRoy(1992), Li(1995),
then heuristics-based approached by McRoy(1992) etc. Topic segmentation is-
sues have been worked upon by Hearst 1997 (topics boundaries discovered with
slighting window-like systems), Kan 1998 (entity repetition-based concepts).
Clustering techniques have also evolved over time, for example divisive cluster-
ing (Choi 2000), partitional and hierarchical clustering (He 2000). These works
have culminated into further research work e.g. topic detection in unrestricted
text using lexical cohesion(Chali 2001).

Managing Worldwide Operations & Communications with Information Technology 1511

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

One of the methods for representing documents as networks using partitional and
hierarchical clustering techniques is further explained in this section, to compare
its strength and applicability with the proposed knowledge pre-processing model
here. This section is based on the work of him (2001) and Chen (2001). The
original research was aimed at classifying hypertext documents, but the process
logic is appealing for applications to any unstructured text domain. The basics
of this process are as follows:

• Any knowledge source/ input is treated unstructured documents
• Co-occurrence (He 2001) analysis is used to find the similarities and then

consequently the dissimilarities between the documents. This is done as
follows:

 Co-occurrence analysis converts data indices and weights obtained from
inputs of parameters and various document sources e.g. email/text message
bodies, into a matrix that shows the similarity between every pair of such
sources.(He et al 2001,He and Hui 2002, Shneidermann 1996)

 When measured between two documents, say Ei and Ej,

 Simij = α {A ij / |A|2 } + β Sij / |S|2+ (1- α – β) Cij / |C|2 (1)

 0< α, β (parameters) <1, 0 <= α + β <=1,

 where A, S, and C are matrices for Aij, Sij, and Cij respectively. Values for
Aij will be 1 if Ei has a direct link/ reference/ hyperlink to Ej, else 0. S is the
asymmetric similarity score Ei and Ej, and is calculated as follows:

 p n
 Sij = sim (Ei, Ej) = [[∑ dki dkj] / [∑ d2dij]] (2)
 k = 1 k = 1

 where n is total number of terms in Ei, m is total number of terms in Ej , p is
total number of terms that appear in both Ei, and Ej., dij = (Number of occur-
rence of term j in Ei) X log((N/dfj)Xwj)X(Termtype factor); dfj is number of
documents containing term j; wj is number of words in term j; Termtype factor
= 1 + ((10-2 X typej / 10), where typej = min 1 if term j appears in subject,
2 if it appears in body, 3 if it appears in ‘note’ etc.) and Cij is number of Es
pointing to both Ei and Ej (co citation/ cross-referencing matrix).

• Document bodies which are very similar in terms of their contents i.e. many of
the identified key-terms (i.e. Terms excluding the general terms like pro-nouns,
prepositions, conjunctions etc.)are same, can be clubbed up together to form
a cluster. Dissimilar document bodies can be created as other clusters.

• These clusters can then form a network using hierarchical and partitional
clustering method to form a graph with the nodes as representative knowledge
maps for a particular group of documents with high-similarity in their body
text.

• Partitioning of a graph, say G, can be done in various ways, for example, by
using similarity measures as below: (Rich and Knight 2001,Shi and Malik
2000)

Normalized Cut (x) = {cut between (A, B)/ assoc(A, V)} + {cut between (A, B)/
assoc (B,V) (3)

where, Cut between (A,B) = ∑i€A, j€B Simij , Simij is similarity between nodes
i and j of the graph. Assoc(A,V) and assoc(B,V) shows how on average nodes
within a group are connected to each other. A cut on a graph G = (V, E) is defined
as removal of a set of edges such that the graph is split into disconnected sub-
graphs. (Chen et al 1998,Chen et al 2001)

Now, this approach can work fine when the whole document has no element of
structure in it at all i.e. any headers / titles / subject lines etc., or these also are
combined together along with the body text and are processed together as well, not
separately. This property is the main strength as well as weakness of this approach
in specific and these kind of clustering-based approaches in general. The strength
is that it can handle the whole document as a whole. The weakness is, in doing so,
1) It fails to exploit whatever little structure-related information that is embedded in
some part of the document structure itself e.g. label, headings etc., 2) the complex
and repetitive nature of the algorithm makes it extremely resource-intensive and
in absence of such intensive or dedicated resources, extremely slow.

Other approaches like lexical chains suffer from similar constraints. Lexical
chains arise from concepts of lexical cohesion that may arise from semantic
connections between words (Chali 2005). Deriving the cohesion structure of a

text is equivalent to retrieving lexical chains like LC = {w1, w2, …, wn}. These
approaches while working fine with entire text as inputs, as is the case of topic
discovery, searching or matching, do not again exploit certain default structured
properties of text documents.

The concept of LCs however, can be used appropriately within the context of this
paper as well, i.e. we can create the first level of document identifiers or classi-
fiers by applying these LC-discovery concepts to the document label information
itself e.g. the heading/ subject lines etc. We have actually used the concept similar
to that of Roget’s thesaurus as explained by Chali 2005, in the lexical analysis
equivalence part of our model.

3. GENErIc MODEL OUTLINE FOr KNOWLEDGE PrE-
PrOcESSOr
The generic model of knowledge pre-processor, as explained in the section above,
is shown in Figure 1.

Explanation of the sub-modules of the knowledge-preprocessing module:

• Lexical information extractor: This is designed in line of lexical analyzer in
compilers, the main differences being that in case of compilers, the output of
a lexical analyzer is a symbol table with tokens, lexemes and patterns. But
here the output of a lexical analyzer will be broken-down fragments of the
subject sentence into nouns/ verbs/ adjectives/adverbs etc. (the identification
of a noun/verb and its subgroups e.g. names/ objects/ functions etc. can be
done by using pattern matching and thesaurus). If we represent this analogy
as in Figure 3, we get the symbol table equivalent in knowledge pre-processor
as shown in table 1 inside Figure 3.

Figure 1. Positioning the knowledge pre-processor in the context of creating a
re-usable knowledge base/ repository with unstructured sources

Figure 2. Knowledge pre-processor – basic building blocks and their outputs

 Figure 2

Input knowledge
sources:
• Documents
• Messages
• Etc.

Knowledge pre-processor

This gets absorbed in the
output frame as-
Output: {Level 0 classifier,
original document body}

Unstructured text
handling modules

Knowledge base:
knowledge map network/
clusters/ other schemes

Level 0 identifier/
classifier/ pre-
classifier

Parsing Lexical information
extractor

Syntactic
information
extractor

Lexical information
table

Syntax tree Semantic net Intermediate
Outputs:

Level 0 classifier/ identifier information structure

Final output
(of pre-
processor
nodule

Semantic information
extractor

1512 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

• Syntactic information extractor: The syntax extractor can draw it’s equiva-
lence to the syntax directed definitions including the annotated parse trees,
dependency graphs, evaluation order-based graphs and syntax trees. A syntax
tree can be thought as a condensed form of parse tree useful for represent-
ing language constructs. For example a production rule-type knowledge
presentation scheme can appear as a syntax tree in the following form:

If- then- else

 B S1 S2

For a production rule: If B then S1 else S2.

• Semantic information extractor: Can be designed with an equivalence of
semantic analyzer. The output can take form of a semantic network.

In the following section, we use a simple example drawn from a practical applica-
tion situation and take this example through the initial steps in the knowledge pre-
processor, basically onto up to the lexical analyzer equivalent part. This example
can be further worked upon for generating the syntax trees as explained briefly
above. And then it can be taken further to form it’s semantic net equivalent.

AN ExAMPLE
Suppose there are two customer e-mail messages about rouble-shooting, to be
input to a CRM knowledge base. The email messages have their subject lines in a
fairly structured fashion, as they have used the pre-defined form fields of customer
feedback forms on the company websites. These subject fields are considered as
two inputs strings in this example. They are as follows:

InputString1: {Microwave model no. 2021 purchased in year 2002 not function-
ing: the table is not rotating}

InputString2:{Microwave model no. 4576 purchased in year 2005 not function-
ing: heating is not proper}

First level of lexical analysis on these two strings may generate output as fol-
lows:

InputString1: [Microwave model no. 2021 purchased in year 2002 not function-
ing]: (considered as connector) [the table is not rotating]

InputString2:[Microwave model no. 4576 purchased in year 2005 not function-
ing]: [heating is not proper]

2nd level: nouns (match from dictionary of nouns: can be made restricted to con-
texts: e.g. names (e.g. in case of customers complaining about service etc.
by names), objects (as microwave in this example), place-names, function-
names(e.g. ‘heating’ in the 2nd input string and so on)

InputString1: [[Microwave] [model no. 2021] purchased in [year 2002] not
functioning] : [the [table] is not rotating]

InputString2:[[Microwave] [model no. 4576] purchased in [year 2005] not
functioning]: [heating is not proper]

3rd level: verbs

InputString1: [[Microwave] [model no. 2021] [purchased] in [year 2002][not
functioning]] : [the [table] is [not rotating]]

InputString2:[[Microwave] [model no. 4576] [purchased] in [year 2005] not
functioning]: [heating] is not proper]

4th level: qualifiers/ adjectives

InputString1: [[Microwave] [model no. 2021] [purchased] in [year 2002][not
functioning]] : [the [table] is [not rotating]]

InputString2:[[Microwave] [model no. 4576] [purchased] in [year 2005] not
functioning]: [heating] is [not proper]]

Now, suppose we construct a table to store these strings as analyzed by the lexical
extractor we get Table 1.

This table can be further fine-tuned, for example, by using a look-up table with
index values for all these word-types and their sequential combinations e.g. 1 for
nouns, and then 11 for names, 12 for objects, 13 for verb-type nouns e.g. func-
tion-names (like ‘heating’), 2 for verbs(21 for auxiliary verbs, 22 for continuous
tense …), 3 for adjectives, 4 for binary(yes/ no-not) response and so on. So, a
phrase like ‘Heating is not proper’ can be expressed using this preliminary look-
up table would be

Figure 3. Lexical information extractor as an analogous equivalent of a lexical
analyzer in a compiler

Thesaurus

(additional to basic
compiler
components)

Get next Token
(equiv. Words)

Tokens (equiv.
Words) Lexical

analyzer
Parser

Symbol table
Equiv. Table 1

Nouns Verbs Adjective Adv

Source program
(equiv. document
/ knowledge
source

Table 1. A minimal view of the lexical extractor output with two example input strings

Type of string compo-
nent =

Noun Verb Adjectives Adverbs

InputString1: substring1 [Microwave] [model
no. 2021]
[year 2002]

[purchased] [not func-
tioning]

InputString1: substring2 [table] [not rotating]]
InputString2: substring1 [Microwave] [model

no. 4576]
[year 2005]

[purchased] [not func-
tioning]

InputString2: substring2 [heating] [not proper]

Managing Worldwide Operations & Communications with Information Technology 1513

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

<13> <21> <4> <3>

[Heating] [is] [not] [proper]

This whole string can be stored as an identifier with the numbers as indices for
specific values as 13-21-4-3, just to remember the structure of the phrase. This
information can be further added as the syntactic information for the phrases
which would help in easy reconstruction of the phrases and subsequently easy and
highly understandable retrieval. Also, the connectors may give valuable informa-
tion, e.g. in this example case the symbol ‘:’ depicts a further explanation of the
problem, whereas in other cases the same symbol might mean different things e.g.
cause-and-effect link between the two constructs. So, the connector along with its
semantic role as a connector (e.g. a further explanatory/ a cause-and-effect link)
will also have to be stored as part of the semantic extractor’s job.

The rest of the example can be worked upon using further concepts on syntax and
semantic analysis, as has already been mentioned before. Also, we can combine
this model with the LC or co-occurrence analysis models as explained in earlier
sections and can make the process more efficient.

4. cONcLUSION
This paper presents a fresh approach for knowledge extraction from unstructured
sources using the concept of a pre-processor and the tried and tested concepts of
traditional compiler construction in theoretical as well as applied computer sci-
ences domain. The primary advantage of having a knowledge pre-processor, as
has been explained in the first section of this paper, is the fact that a pre-proces-
sor can perform a level 0 analyzing and discover or present a basic identifier or
classifier for an unstructured knowledge source by exploiting some amount of
structured string-type information that are usually present in the source headers
or document labels or message subjects/headings. This way it can reduce the
workload of a knowledge extraction module which can then take the entire body-
text of the document/ message/ knowledge source and apply the well-researched
approaches of unstructured text handling on them. This way the entire process of
knowledge extraction becomes faster and more resource-efficient. Further research
possibilities include detailed design and implementation of the sub-modules
under the knowledge pre-processor and exploiting the opportunities there again
to use the tired and tested concepts of compilers, theory of computer science,
theory of languages like regular grammar and CFL etc. With reference to the
model presented in this paper, there are research issues in terms of scalability of
the model e.g. the volume of unstructured data as well as heterogeneous source
support-systems that can be handled by the model. Also there are issues related
to the implementation, performance, resource utilization and tuning of any system
based on this model which includes questions like which algorithms to choose
for unstructured information handling, topic detection, preliminary information
extraction, clustering etc., how to optimize the resource utilization for these al-

gorithms, how to improve performance of an actual knowledge preprocessor and
so on. Therefore, the model presented in this paper can be extended in multiple
dimensions including theoretical aspects like algorithms design and analysis to
implementation aspects including scalability and performance issues.

rEFErENcES
Chen, H.; Fan. H.; Chau. M.; and Zeng, D.(2001) Meta Spider: Meta Searching

And Categorization On The Web. Journal of the American Society for Infor-
mation Science and Technology. 52(13). 1134-1147.

Chen. H.; Chung, Y.; Ramsey. M.; and Yang. C.(1998) A smart itsy bitsy spider
for the Web. Journal of the American Society far Information Science. 49.
7, 604-618.

Chali, Y.(2001). Topic Detection Using Lexical Chains. Proceedings of the Four-
teenth International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, Budapest, Hungary, Lecture
Notes in Computer Science 2070, Springer-Verlag. 552–558.

Chali, Y. (2005) Topic Detection Of Unrestricted Texts: Approaches And Evalu-
ations, Applied Artificial Intelligence 19(2): 119-135.

Choi, F. Y.(2000). Advances In Domain Independent Linear Text Segmentation.
Proceedings of the 1st North American Chapter of the Association for Com-
putational Linguistics, Seattle, Washington, USA , 26–33.

Hearst, M. A.(1997). Texttiling: Segmenting Text Into Multi-Paragraph Subtopic
Passages. Computational Linguistics 23(1):33–64.

He, Y, and Hui. S.C. (2002) Mining A Web Citation Database For Author Co-Cita-
tion Analysis. Information Processing and Management. 38(4). 491-508.

He. X.; Ding. C; Zha. H.; Simon, H. (2001) Automatic Topic Identification Using
Webpage Clustering. Proceedings of the 2001 IEEE International Conference
on Data Mining. Los Alamitos. CA: IEEE Computer Society Press. 2(X)I.
195-202.

Kan, M.-Y., K. R. McKeown, J. L. Klavans. (1998). Linear segmentation and
segment relevance. In Proceedings of 6th International Workshop of Very
Large Corpora (WVLC-6), , Montre´al, Canada, 197–205.

Li, X., S. Szpakowicz, S. Matwin. (1995). A Wordnet Based Algorithm For Word
Semantic Sense Disambiguation. Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, Montre´al, Canada, 1368–1374.

McRoy, S. 1992. Using Multiple Knowledge Sources For Word Sense Disambigu-
ation. Computational Linguistics 18(1):1–30.

Rich E., Knight K.(2001), Artificial Intelligence, Tata McGrawHill Publishing
Company Ltd, N. Delhi.

Shi. J., and Malik. J.(2000) Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 22. S (2(X)0),
8S8-905.

Shneidermann, B.(1996) The Eyes Have It: A Task By Data Type Taxonomy For
Information Visualizations. Proceedings of IEEE Symposium on Visual lan-
guages. Los Alamitos, CA: IEEE Computer Society Press, 336-343.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/knowledge-pre-processing/33411

Related Content

Design of Graphic Design Assistant System Based on Artificial Intelligence
Yanqi Liu (2023). International Journal of Information Technologies and Systems Approach (pp. 1-13).

www.irma-international.org/article/design-of-graphic-design-assistant-system-based-on-artificial-intelligence/324761

ESG Information Disclosure of Listed Companies Based on Entropy Weight Algorithm Under the

Background of Double Carbon
Qiuqiong Peng (2023). International Journal of Information Technologies and Systems Approach (pp. 1-13).

www.irma-international.org/article/esg-information-disclosure-of-listed-companies-based-on-entropy-weight-algorithm-under-

the-background-of-double-carbon/326756

Personalized Medicine
Sandip Bisuiand Subhas Chandra Misra (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 5901-5907).

www.irma-international.org/chapter/personalized-medicine/184291

Record Linkage in Data Warehousing
Alfredo Cuzzocreaand Laura Puglisi (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 1958-1967).

www.irma-international.org/chapter/record-linkage-in-data-warehousing/112602

Human Ear Recognition System
Durgesh Singhand Sanjay Kumar Singh (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 5475-5481).

www.irma-international.org/chapter/human-ear-recognition-system/112999

http://www.igi-global.com/proceeding-paper/knowledge-pre-processing/33411
http://www.igi-global.com/proceeding-paper/knowledge-pre-processing/33411
http://www.irma-international.org/article/design-of-graphic-design-assistant-system-based-on-artificial-intelligence/324761
http://www.irma-international.org/article/esg-information-disclosure-of-listed-companies-based-on-entropy-weight-algorithm-under-the-background-of-double-carbon/326756
http://www.irma-international.org/article/esg-information-disclosure-of-listed-companies-based-on-entropy-weight-algorithm-under-the-background-of-double-carbon/326756
http://www.irma-international.org/chapter/personalized-medicine/184291
http://www.irma-international.org/chapter/record-linkage-in-data-warehousing/112602
http://www.irma-international.org/chapter/human-ear-recognition-system/112999

