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AbSTrAcT
Knowledge extraction from semi-structured or unstructured documents and texts 
have become a significant research issue in today’s context when knowledge is 
viewed as the crucial corporate asset and capturing tacit or implicit knowledge 
and converting them into some reusable form have therefore become necessary. In 
this paper, a concept called knowledge pre-processing is proposed, to adequately 
exploit certain latent structured-ness in specific areas of the knowledge sources. 
The concept uses the basic principles of compilers, namely the lexical and semantic 
analyzers, parsers and thesaurus.  
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1. INTrODUcTION
Knowledge pre-processing can make knowledge extraction processes faster and 
more resource-efficient. The basic functions of a pre-compiler can be used as a 
pre-processing unit, as analogous to the Oracle- pro*C kind of combinations.  In 
case of such pre-compilers like Pro*C with oracle, we see that the pre-compiler 
primarily acts as a filter and sends the classified inputs to different processing 
units or modules like a separate c compiler for processing the C programming 
sections and an SQL compiler for processing the ‘exec SQL …” statements.  
Similarly, if this concept gets applied in pre-processing knowledge elements for 
creating re-usable knowledge repositories which can store integrated knowledge 
elements across various sources, types and structures,  the knowledge extraction, 
capture, conversion/ translation(to the format acceptable to the repository) etc. 
i.e. the later steps become easier and faster.  

In fact, many of the knowledge elements which are generally viewed as ‘unstruc-
tured’ or ‘free-flowing texts’ have some degree of explicit structured information 
for example embedded in their labels.  Unfortunately, these already embedded 
‘semi-structured’ information which can help any extraction module to do some 
‘level 0’ or ‘pre-classification’, do not get adequately exploited if the whole 
document along with the semi-structured part also is input at the beginning itself 
to the extraction modules.  For example, there can be limited amount of ‘pre-
classification’ information embedded or available in the document headers, mes-
sage headings, subject lines of letters or emails and so on.  These, if adequately 
processed by a knowledge preprocessor before entering into the actual extraction 
phase, some classification information can already be made available through this 
pre-processing, to the extraction modules.

Therefore, the benefits of a knowledge pre-processing unit to be placed before the 
actual knowledge extraction and capture modules can be explained as follows:

• It can help the knowledge extraction modules, which are often extremely 
resource-hungry and slow (due to less availability of such computational 
resources), more efficient.  The knowledge extraction modules tend to become 
slow because of their unavoidable and extreme logical and processing com-
plexities. A pre-processed input can make the logic simpler to some extent.

• It also helps the knowledge extraction modules to exploit some amount of 
structured information that remained embedded in part of unstructured docu-
ments like headings etc.

In this paper, we propose a generic model for knowledge pre-processor using the 
concepts of compilers in programming languages.  

However, the main difference between the two contexts (i.e. the programming 
language executable code generation vs. knowledge pre-processing) is essentially 
the fact that the output of the knowledge pre-processor is not any executable code 
etc. but some structured information about the knowledge source that is being 
input to a knowledge extraction module. The other significant difference which is 
a basic one is the fact that input for a compiler is a source code file with a specific 
programming language as using regular expressions and regular grammar, whereas 
in case of a knowledge pre-processor the input will be free flowing text strings 
for example as constructs in CFL(Context Free language). 

There have already been some applications of compiler-related techniques for 
discovering classification information from unstructured text, like topic searching 
using lexical analysis, lexical chains etc.  Here, our main purpose is NOT to extend 
any of these techniques or even enter into the searching algorithms, pattern search 
or thesaurus-based pattern matching algorithms which get applied to the entire 
body of the messages/ documents i.e. the whole of the unstructured inputs.  

On the contrary, in this paper, we are proposing the concept of using a pre-processor 
based on similar concept like compilers, along with some explanations and examples 
of its possible use and benefits. Towards this end, we have first discussed some 
of the approaches for pattern discovery, subject identification, classification and 
clustering of unstructured/ semi-structured documents.  Then we take a clean-slate 
approach with zero assumptions about the concept of knowledge pre-processing, 
and develop a new generic model for doing the same. Therefore, the authors’ 
contribution starts from the section under heading “Generic model outline for 
knowledge pre-processor” which explains the basic framework of the knowledge 
pre-processor and its generic components, their roles and inter-relations. 

2. UNSTrUcTUrED TExT hANDLING APPrOAchES
There is various research issues related to unstructured/ free-flowing text.  The 
issues range from highly theoretical, mathematical, logical and analytical dimen-
sions like discovering cohesions and relations between various sections of body 
texts (e.g. paragraphs), discovering topics, searching for topics.  Further issues 
are related to the practical or implementations-specific side of the problem e.g. 
storing the discovered/ searched information in a knowledge representation 
format which is more accessible, understandable, easy to implement, and easily 
retrievable to achieve the ultimate goal of re-usable knowledge repositories. These 
issues translate down to specific research questions like: text segmentation, topic 
tracking, topic detection, link detection, classification and clustering. 

The background work for these issues have started since many years, starting from 
the machine readable dictionary-based approaches by McRoy(1992), Li(1995), 
then heuristics-based approached by McRoy(1992) etc. Topic segmentation is-
sues have been worked upon by Hearst 1997 (topics boundaries discovered with 
slighting window-like systems), Kan 1998 (entity repetition-based concepts).  
Clustering techniques have also evolved over time, for example divisive cluster-
ing (Choi 2000), partitional and hierarchical clustering (He 2000).  These works 
have culminated into further research work e.g.  topic detection in unrestricted 
text using lexical cohesion(Chali 2001).  
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One of the methods for representing documents as networks using partitional and 
hierarchical clustering techniques is further explained in this section, to compare 
its strength and applicability with the proposed knowledge pre-processing model 
here. This section is based on the work of him (2001) and Chen (2001).  The 
original research was aimed at classifying hypertext documents, but the process 
logic is appealing for applications to any unstructured text domain.  The basics 
of this process are as follows:

• Any knowledge source/ input is treated unstructured documents
• Co-occurrence (He 2001) analysis is used to find the similarities and then 

consequently the dissimilarities between the documents.  This is done as 
follows:

 Co-occurrence analysis converts data indices and weights obtained from 
inputs of parameters and various document sources e.g. email/text message 
bodies, into a matrix that shows the similarity between every pair of such 
sources.(He et al 2001,He and Hui 2002, Shneidermann 1996) 

 When measured between two documents, say Ei and Ej, 

 Simij = α {A ij  / |A|2 } +  β Sij  / |S|2+ ( 1-  α – β ) Cij / |C|2 (1)

 0< α, β (parameters) <1, 0 <= α + β <=1, 

 where A, S, and C are matrices for Aij, Sij, and Cij respectively.  Values for 
Aij will be 1 if Ei has a direct link/ reference/ hyperlink to Ej, else 0.  S is the 
asymmetric similarity score Ei and Ej, and is calculated as follows:

           p            n
 Sij = sim (Ei, Ej ) =  [[ ∑ dki dkj  ] / [ ∑ d2dij ]]   (2)
         k = 1           k = 1

 where n is total number of terms in Ei, m is total number of terms in Ej , p is 
total number of terms that appear in both Ei, and Ej., dij = (Number of occur-
rence of term j in Ei) X log((N/dfj)Xwj)X(Termtype factor); dfj is number of 
documents containing term j; wj is number of words in term j; Termtype factor 
= 1 + ((10-2 X typej / 10), where typej = min 1 if term j appears in subject, 
2 if it appears in body, 3 if it appears in ‘note’ etc.) and Cij is number of Es 
pointing to both Ei and Ej (co citation/ cross-referencing matrix). 

• Document bodies which are very similar in terms of their contents i.e. many of 
the identified key-terms (i.e.  Terms excluding the general terms like pro-nouns, 
prepositions, conjunctions etc.)are same, can be clubbed up together to form 
a cluster.  Dissimilar document bodies can be created as other clusters. 

• These clusters can then form a network using hierarchical and partitional 
clustering method to form a graph with the nodes as representative knowledge 
maps for a particular group of documents with high-similarity in their body 
text.

• Partitioning of a graph, say G, can be done in various ways, for example, by 
using similarity measures as below: (Rich and Knight 2001,Shi and Malik 
2000)

Normalized Cut (x) =  {cut between (A, B)/ assoc(A, V)} + {cut between (A, B)/ 
assoc (B,V)     (3)

where, Cut between (A,B) = ∑i€A, j€B Simij , Simij is similarity between nodes 
i and j of the graph. Assoc(A,V) and assoc(B,V) shows how on average nodes 
within a group are connected to each other. A cut on a graph G = (V, E) is defined 
as removal of a set of edges such that the graph is split into disconnected sub-
graphs. (Chen et al 1998,Chen et al 2001)

Now, this approach can work fine when the whole document has no element of 
structure in it at all i.e. any headers / titles / subject lines etc., or these also are 
combined together along with the body text and are processed together as well, not 
separately.  This property is the main strength as well as weakness of this approach 
in specific and these kind of clustering-based approaches in general.  The strength 
is that it can handle the whole document as a whole.  The weakness is, in doing so, 
1) It fails to exploit whatever little structure-related information that is embedded in 
some part of the document structure itself e.g. label, headings etc., 2) the complex 
and repetitive nature of the algorithm makes it extremely resource-intensive and 
in absence of such intensive or dedicated resources, extremely slow. 

Other approaches like lexical chains suffer from similar constraints. Lexical 
chains arise from concepts of lexical cohesion that may arise from semantic 
connections between words (Chali 2005).  Deriving the cohesion structure of a 

text is equivalent to retrieving lexical chains like LC = {w1, w2, …, wn}.  These 
approaches while working fine with entire text as inputs, as is the case of topic 
discovery, searching or matching, do not again exploit certain default structured 
properties of text documents. 

The concept of LCs however, can be used appropriately within the context of this 
paper as well, i.e. we can create the first level of document identifiers or classi-
fiers by applying these LC-discovery concepts to the document label information 
itself e.g. the heading/ subject lines etc. We have actually used the concept similar 
to that of Roget’s thesaurus as explained by Chali 2005, in the lexical analysis 
equivalence part of our model.

3. GENErIc MODEL OUTLINE FOr KNOWLEDGE PrE-
PrOcESSOr
The generic model of knowledge pre-processor, as explained in the section above, 
is shown in Figure 1.

Explanation of the sub-modules of the knowledge-preprocessing module:

• Lexical information extractor: This is designed in line of lexical analyzer in 
compilers, the main differences being that in case of compilers, the output of 
a lexical analyzer is a symbol table with tokens, lexemes and patterns.  But 
here the output of a lexical analyzer will be broken-down fragments of the 
subject sentence into nouns/ verbs/ adjectives/adverbs etc. (the identification 
of a noun/verb and its subgroups e.g. names/ objects/ functions etc. can be 
done by using pattern matching and thesaurus).  If we represent this analogy 
as in Figure 3, we get the symbol table equivalent in knowledge pre-processor 
as shown in table 1 inside Figure 3. 

Figure 1. Positioning the knowledge pre-processor in the context of creating a 
re-usable knowledge base/ repository with unstructured sources

Figure 2. Knowledge pre-processor – basic building blocks and their outputs
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• Syntactic information extractor: The syntax extractor can draw it’s equiva-
lence to the syntax directed definitions including the annotated parse trees, 
dependency graphs, evaluation order-based graphs and syntax trees.  A syntax 
tree can be thought as a condensed form of parse tree useful for represent-
ing language constructs.  For example  a production rule-type knowledge 
presentation scheme can appear as a syntax tree in the following form: 

 
If- then- else 

 
    B  S1  S2 
  

For a production rule: If B then S1 else S2. 

• Semantic information extractor: Can be designed with an equivalence of 
semantic analyzer.  The output can take form of a semantic network.  

In the following section, we use a simple example drawn from a practical applica-
tion situation and take this example through the initial steps in the knowledge pre-
processor, basically onto up to the lexical analyzer equivalent part.  This example 
can be further worked upon for generating the syntax trees as explained briefly 
above.  And then it can be taken further to form it’s semantic net equivalent.  

AN ExAMPLE
Suppose there are two customer e-mail messages about rouble-shooting, to be 
input to a CRM knowledge base.  The email messages have their subject lines in a 
fairly structured fashion, as they have used the pre-defined form fields of customer 
feedback forms on the company websites.  These subject fields are considered as 
two inputs strings in this example.  They are as follows:

InputString1: {Microwave model no. 2021 purchased in year 2002 not function-
ing: the table is not rotating}

InputString2:{Microwave model no. 4576 purchased in year 2005 not function-
ing: heating is not proper}

First level of lexical analysis on these two strings may generate output as fol-
lows:

InputString1: [Microwave model no. 2021 purchased in year 2002 not function-
ing]: (considered as connector) [the table is not rotating]

InputString2:[Microwave model no. 4576 purchased in year 2005 not function-
ing]: [heating is not proper]

2nd level: nouns (match from dictionary of nouns: can be made restricted to con-
texts: e.g. names (e.g. in case of customers complaining about service etc. 
by names), objects (as microwave in this example), place-names, function-
names(e.g. ‘heating’ in the 2nd input string and so on)

InputString1: [[Microwave] [model no. 2021] purchased in [year 2002] not 
functioning] : [the [table] is not rotating]

InputString2:[[Microwave] [model no. 4576] purchased in [ year 2005] not 
functioning]: [heating is not proper]

3rd level: verbs

InputString1: [[Microwave] [model no. 2021] [purchased] in [year 2002][ not 
functioning]] : [the [table] is [not rotating]]

InputString2:[[Microwave] [model no. 4576] [purchased] in [ year 2005] not 
functioning]: [heating] is not proper]

4th level: qualifiers/ adjectives

InputString1: [[Microwave] [model no. 2021] [purchased] in [year 2002][ not 
functioning]] : [the [table] is [not rotating]]

InputString2:[[Microwave] [model no. 4576] [purchased] in [ year 2005] not 
functioning]: [heating] is [not proper]]

Now, suppose we construct a table to store these strings as analyzed by the lexical 
extractor we get Table 1.

This table can be further fine-tuned, for example, by using a look-up table with 
index values for all these word-types and their sequential combinations e.g. 1 for 
nouns, and then 11 for names, 12 for objects, 13 for verb-type nouns e.g. func-
tion-names (like ‘heating’), 2 for verbs(21 for auxiliary verbs, 22 for continuous 
tense …), 3 for adjectives, 4 for binary(yes/ no-not) response and so on. So, a 
phrase like ‘Heating is not proper’ can be expressed using this preliminary look-
up table would be 

Figure 3. Lexical information extractor as an analogous equivalent of a lexical 
analyzer in a compiler
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Table 1. A minimal view of the lexical extractor output with two example input strings

Type of string compo-
nent =

Noun Verb Adjectives Adverbs

InputString1: substring1 [Microwave] [model 
no. 2021] 
[year 2002] 

[purchased] [not func-
tioning]

InputString1: substring2  [table] [not rotating]]
InputString2: substring1 [Microwave] [model 

no. 4576] 
[ year 2005] 

[purchased] [not func-
tioning]

InputString2: substring2 [heating] [not proper]
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<13>  <21>  <4>  <3>

[Heating]  [is]  [not]  [proper]

This whole string can be stored as an identifier with the numbers as indices for 
specific values as 13-21-4-3, just to remember the structure of the phrase.  This 
information can be further added as the syntactic information for the phrases 
which would help in easy reconstruction of the phrases and subsequently easy and 
highly understandable retrieval.  Also, the connectors may give valuable informa-
tion, e.g. in this example case the symbol ‘:’ depicts a further explanation of the 
problem, whereas in other cases the same symbol might mean different things e.g. 
cause-and-effect link between the two constructs. So, the connector along with its 
semantic role as a connector (e.g. a further explanatory/ a cause-and-effect link) 
will also have to be stored as part of the semantic extractor’s job.  

The rest of the example can be worked upon using further concepts on syntax and 
semantic analysis, as has already been mentioned before.  Also, we can combine 
this model with the LC or co-occurrence analysis models as explained in earlier 
sections and can make the process more efficient. 

4. cONcLUSION
This paper presents a fresh approach for knowledge extraction from unstructured 
sources using the concept of a pre-processor and the tried and tested concepts of 
traditional compiler construction in theoretical as well as applied computer sci-
ences domain.  The primary advantage of having a knowledge pre-processor, as 
has been explained in the first section of this paper, is the fact that a pre-proces-
sor can perform a level 0 analyzing and discover or present a basic identifier or 
classifier for an unstructured knowledge source by exploiting some amount of 
structured string-type information that are usually present in the source headers 
or document labels or message subjects/headings. This way it can reduce the 
workload of a knowledge extraction module which can then take the entire body-
text of the document/ message/ knowledge source and apply the well-researched 
approaches of unstructured text handling on them. This way the entire process of 
knowledge extraction becomes faster and more resource-efficient. Further research 
possibilities include detailed design and implementation of the sub-modules 
under the knowledge pre-processor and exploiting the opportunities there again 
to use the tired and tested concepts of compilers, theory of computer science, 
theory of languages like regular grammar and CFL etc. With reference to the 
model presented in this paper, there are research issues in terms of scalability of 
the model e.g. the volume of unstructured data as well as heterogeneous source 
support-systems that can be handled by the model.  Also there are issues related 
to the implementation, performance, resource utilization and tuning of any system 
based on this model which includes questions like which algorithms to choose 
for unstructured information handling, topic detection, preliminary information 
extraction, clustering etc., how to optimize the resource utilization for these al-

gorithms, how to improve performance of an actual knowledge preprocessor and 
so on.  Therefore, the model presented in this paper can be extended in multiple 
dimensions including theoretical aspects like algorithms design and analysis to 
implementation aspects including scalability and performance issues. 
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