Nowadays, companies dealing with software development are often facing problems related to cadre as a consequence of rapid technology changes and varying project requirements. Knowledge of the companies' software engineers is quickly becoming outdated and it is virtually impossible for a single developer to master all the latest technologies and approaches in his field of expertise. Consequently older technologies often remain in use. Yet another difficulty is that cadre requirements of software development companies change from project to project. Frequently, when a new project is commenced additional workforce is required. After the project is finished these additional employees are not needed anymore.

The usual solution would be to employ more people and to additionally educate the remaining employees. However, it is often difficult to find enough people locally that have suitable knowledge and expertise and therefore additional training of new employees is required also. If these additional employees are not needed after the project is finished, educating them only for the needs of a project is a costly solution.

An alternative solution might be to form a virtual team. The main advantage of such solution is that team members can be selected from a large pool of people having appropriate skills and knowledge (Furst, Reeves, Rosen, & Blackburn, 2004). Nevertheless, different problems have been reported that arise in such teams (Johnson, Heimann, & O’Neill, 2001) and many projects relying on a virtual team failed (Furst, Reeves, Rosen, & Blackburn, 2004). The most exposed problems in virtual teams were related to communication (Gould, 1999) and different human factors (Townsend & DeMarie, 1998). Researchers suggest that people working in virtual teams need special social and communication abilities and should be trained to work in such teams (Gibson & Cohen, 2003).

The goal of our research is to create methodological approach that would enable a software development company to instantaneously start an ad hoc virtual team when required. A company should be able to use such virtual team to implement a whole system or only parts of a system. As most of the problems in virtual teams arise due to communication and human factors our aim is to lessen their impact. A backbone of the approach comprises of core system architecture, project management, core development process and human resource management. The purpose of the backbone that is managed centrally is to enable synchronisation of virtual team members.

- **The core system architecture** facilitates construction of the system from relatively small system parts. The backbone of the architecture is a system framework that connects these parts into a functioning system. Each system part is precisely defined by a detailed description of its functions and a definition of its interface. To support such architecture we intend to use existing technologies and architectures like SOA (Erl, 2005).

- **The project management** is modified in a way that it minimises human factor risks. Work is divided into small independent tasks. Each task is defined in a way that it can be executed by a single team member in a relatively short period of time and that its execution is as independent as possible to minimise needs for communication between team members. This way the progress can be monitored more precisely and problems detected more easily. To further minimise the risks more critical tasks are assigned to more dependable team members and less critical tasks to new or less dependable team members. Because tasks are relatively small it is also possible to assign highly critical tasks to more than one team member and after two or more developers completed such task only the best solution (system part) is selected for inclusion in the final system.

- **The core development process** gives detailed instructions on how to perform different types of tasks. To lessen communication problems each team member is given only the instructions that are necessary to perform the type of task he was assigned. Furthermore, instructions are adapted to the skills and knowledge of each team member. The adaptation is based on principles of situational method engineering (Brinkkemper, Lyytinen, & Welke, 1996).

Figure 1 shows the model of the proposed approach.

REFERENCES

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Figure 1: Model of the proposed approach that enables instantaneous formation of a virtual development team

Related Content

Integrated Methods for a User Adapted Usability Evaluation
www.irma-international.org/chapter/integrated-methods-user-adapted-usability/70725

The Trends and Challenges of 3D Printing
www.irma-international.org/chapter/the-trends-and-challenges-of-3d-printing/184145

Discovering Patterns using Process Mining
Ishak Meddah and Belkadi Khaled (2016). International Journal of Rough Sets and Data Analysis (pp. 21-31).
www.irma-international.org/article/discovering-patterns-using-process-mining/163101

An Adaptive Curvelet Based Semi-Fragile Watermarking Scheme for Effective and Intelligent Tampering Classification and Recovery of Digital Images

Complexity Analysis of Vedic Mathematics Algorithms for Multicore Environment
www.irma-international.org/article/complexity-analysis-of-vedic-mathematics-algorithms-for-multicore-environment/186857