
Nitesh Bharosa, Delft University of Technology, Jaffalaan 5, NL-2600 GA, Delft, The Netherlands; E-mail: n.bharosa@tudelft.nl
Marijn Janssen, Delft University of Technology, Jaffalaan 5, NL-2600 GA, Delft, The Netherlands
René Wagenaar, Delft University of Technology, Jaffalaan 5, NL-2600 GA, Delft, The Netherlands

ABSTRACT
Enterprise Architecture (EA) is an ill-understood concept, especially in the context of e-business. The aim of this paper is to explore the elements that make up EA and to classify the kinds of purposes EA could serve for the realization of e-business. Using literature research, we derive three elements of EA frameworks. We applied the EA elements on a running case at a large multinational firm, which is currently migrating towards an e-business platform. In the case study, EA was only usable for descriptive purposes, making EA a valuable instrument for communication and analysis. EA was not usable for prescriptive purposes such as the design or redesign of information systems in relation to changing business processes. The main cause of this is the lack of comprehensive tooling support, something that will hamper using EA for developing and deploying e-business solutions in the future.

1. INTRODUCTION
Businesses are constantly facing the need to adapt to new international legislation, technological innovations, increasing competition and changing customer demands. Adaptability is a multidimensional concept [8], requiring comprehensive alignment between the strategy of a company, its business processes and the supporting information technology (IT). Achieving alignment between business processes and IT requires an integrated approach to all aspects of the enterprise [20]. Various consultancy and research institutes [10][21][24][28][34] suggest using the concept of enterprise architecture (EA) as an integrated approach towards business-IT alignment. Veasy [30] states that one of the key objectives for using architectural concepts is to achieve organizational flexibility and adaptability for complex organizations to manage the increasing rate of change. In addition, EA proponents advocate that the use of EA will leverage strategic adaptability, increased organizational performance and technology integration resulting in significant cost reduction and growth potential [1], [6], [12], [30].

Many EA frameworks e.g. Zachman, TOGAF, DODAF and GERAM were developed [4], [5]. Usually, such EA frameworks are offered with design approaches, modeling notations and principles aimed at guiding architects during the business-IT alignment process. Although there are many whitepapers on EA presented by consultancy firms and governmental agencies, scientific contributions on EA and its practical value is scarce [2][7]. Moreover, it is unclear what constitutes an EA. As EA is an ill-defined [23] and still evolving concept [14]. In this paper, we derive the main elements of EA by analyzing existing EA frameworks in order to obtain better understanding of what constitutes EA. We endeavor to identify what purposes enterprise architecture should serve in the transition to e-business platforms.

This paper is structured as follows. In the following section, we present the state of the art in EA. Section three presents the research approach. In section four, elements which constitute EA are derived from literature. Next we identify the business needs for EA using a single case study. In section six we develop an EA reference framework. Then we evaluate the purposes of the devised framework in a case study environment. Finally, section eight presents the main conclusions and some directions for further research.

2. STATE OF THE ART IN ENTERPRISE ARCHITECTURE
With the original article published in 1987, Zachman [33] was the first to discuss architectural concepts in relation to IT. Zachman’s article was his response to the needs of his IBM clients that had requirements for data standards and information sharing strategies across several systems, which called for an overarching architecture [4].

The idea of enterprise architecture is that it can be used to guide design decisions and limit the solution space by setting constraints [16]. Architecture aims at creating some kind of structure in a chaotic environment using systematic approaches [1]. In general, the architecture concept intends to establish standards for the employment of information technologies in ways that responded to strategic and business requirements, and that helps an enterprise to manage the ongoing transition from its current processes and systems to a desired future architecture [27].

Since Zachman’s pioneering work [33], IT architects and managers used numerous proverbs in conjunction with the term ‘architecture’. The term “enterprise” refers to the scope of the architecture, dealing with the organization as a whole or in case of EA, dealing with multiple departments and organizations rather than with a certain organizational part [7]. Other proverbs (e.g. business, process, application, service, network etc.) usually suggest a certain aspect or technical component that the architecture is meant to depict. Due to the use of the proverbs, it has become evermore complicated to clarify enterprise architecture. Moreover, Khoury & Simoff [18] underline that scarce attention has been paid to the theoretical basis of EA methods and frameworks until now.

3. RESEARCH APPROACH
In order to study the concept of EA in a business environment, we adapted the Information Systems Research Framework (ISRF) [9]. The ISRF suggests an interactive cycle of four main steps including: 1) literature review, 2) analysis of the business needs, 3) framework development, and 4) evaluation of the developed framework.

To analyse the business needs, we use the case study instrument. This approach allows us to investigate EA in a real-life setting [31]. As a case study, we used a multi-national company that is in a transformation process to become an e-business company in some of its operations. We conducted a single case study by analyzing multiple sources of information, including semi-structured interviews with two head architects (one responsible for business and the other for IT), archival analysis and participatory observation.

4. ELEMENTS IN ENTERPRISE ARCHITECTURE FRAMEWORKS
Generally EA frameworks embody a constellation of elements which architects consider relevant for modelling both business and IT systems. We found five common elements of EA in the reviewed literature (see table 1).

As first element, we found that most EA frameworks make use of layers [12], which are distinguished using various proverbs (e.g. business, process, organiza-
As second common element, we found that EA frameworks often suggest some predefined views. The notion of views is so basic that some researchers consider the Zachman Framework merely as a table consisting of 36 different views on an IT system [24]. In the IEEE1471 Standard for Architectural Descriptions [10], the derivation and definition of views is a crucial step for architectural design. EAs are disclosed by means of views; typically, stakeholders of an enterprise access and use the architecture through views presenting the information they need in a user-friendly format and supported by useful analysis techniques [20]. It is agreed upon that the use of views reduces the size and complexity of architecture layers [10][20][33].

The third common element in EA frameworks is the modeling notation. The modeling notation refers to a language allowing for description of the components and the relationships in the architectural layers. While the most frequently used notations for modeling EAs are languages originating from the software engineering field such as the Unified Modeling Language (UML) and IDEF, some languages are emerging specifically for the description of business processes such as the Business Process Modeling Notation (BPMN) [5]. We emphasize that the EA modeling notations found in literature are not only different in their syntax and semantics; they also differ in the objectives they aim to achieve. Consequently, there is currently no single modeling notation suitable for modeling multiple distinguished architecture layers.

As a fourth element, we found architectural development approaches. Spevak [27] was amongst the first to discuss the EA planning process, considering the fact that the original Zachman framework does not propose an EA design approach. The design approaches constitute a way of working or a prescriptive process model, which specifies the activities, required for migrating from the current situation to a target situation. Hence, the design approaches provide a process-oriented view of information system development. Examples of EA development approaches are TOGAF-ADM [28] and GERAM [5].

Usually, the third and fourth element some architectural principles [12],[20]. Architectural principles are considered guidelines that describe the constraints imposed upon the organization, and/or the decisions taken in support of realizing the business strategies [15]. In this way, principles restrict the design freedom of designers and set the direction for the future.

Finally, tools are necessary to support EA frameworks. By nature, EA requires the interconnection and accumulation of large amounts of information from different sources [20]. Modeling the content and relationships of enterprise elements can only be successful if supported by adequate tooling [2][14]. Most of the EA tools currently on the market have started as CASE (Computer Aided Software Engineering) tools [5] and are not yet capable of modeling the relationship between different architecture layers [2][20]. Gartner [14] predicted significant growth for the EA tool market and predicts current tools to evolve into more comprehensive and customizable tools capable to model all layers of the enterprise.

In order to create some clarity, we classified the elements mentioned according to the terms used by SoI [25]. This framework has proven to be useful in similar research [15] on working with information systems. This framework comprises a way of thinking, controlling, working, viewing, modeling and supporting as six interrelated aspects to capture a problem area and has proved to be helpful in similar research [15].

We relate the way of thinking to the concept of layers in architectural development. The way of controlling refers to the overall management (e.g. financial, risk) of EA and is left out of table 1. The way of working refers to the steps taken to develop an EA. The way of modeling relates to modeling notations for EA. Finally, the way of supporting refers to repository tools for electronically documenting and relating the current processes, information flows and applications. We illustrate the elements after a brief discussion of the business needs.

5. THE BUSINESS NEEDS: A CASE STUDY

We conducted a case study at a major multinational company operating in over two hundred countries. The goals of the case study are to 1) understand the need for EA for e-business and 2) describe an environment in which an EA framework can be applied.

Within the multinational, the various country-oriented units are using their own customer relationship management (CRM) systems. Consequently, there are more than hundred different systems throughout the entire firm. As these systems were developed separately, it is difficult to gather customer information on the global level. In order to attain synergy and reduce cost, the companies Corporate CIO (Corporate Information Office) plans to deploy a common SAPCRM landscape. The objective is to move from separate systems towards a shared CRM architecture, designed to support information exchange for cross-country sales.

We conducted the case study at the CIO in the Netherlands. In collaboration with the CIO’s of nine other west European countries, the Dutch CIO is planning and anticipating the roll out of the global SAPCRM. In doing so, the Dutch CIO is devising a future CRM architecture for the Netherlands in collaboration with the Business Services department (BS) and the Application Management Center (AMC). The following figure depicts the relationships between the stakeholders involved.

In this figure, both Corporate CIO and Dutch CIO (CIO NL) operate on a strategic level, respectively looking at the global environment and the local situation, application, information and infrastructure). These proverbs represent the functionality within an enterprise system [21].

As second common element, we found that EA frameworks often suggest some predefined views. The notion of views is so basic that some researchers consider the Zachman Framework merely as a table consisting of 36 different views on an IT system [24]. In the IEEE1471 Standard for Architectural Descriptions [10], the derivation and definition of views is a crucial step for architectural design. EAs are disclosed by means of views; typically, stakeholders of an enterprise access and use the architecture through views presenting the information they need in a user-friendly format and supported by useful analysis techniques [20]. It is agreed upon that the use of views reduces the size and complexity of architecture layers [10][20][33].
ination within a country. For each country, the migration from the existing CRM architecture to the CRM target architecture must be specified individually. However, developing such a comprehensive architecture for the SAPCRM rollout requires a detailed description of the current sales processes, information flows, application services provided by AMC and infrastructure services provided by BS. As the role of some application, meant to support some specific process at any given department, may change in the future, the relations between the processes, information flows and applications needs to be described as well. Therefore, the main problem the Dutch CIO faces is the development of a comprehensive architecture describing the current and future relations between the processes, information flows and applications.

6. REFERENCE FRAMEWORK

In order to analyze the alignment of the CRM processes and the supporting IT, we developed a reference framework. The reference framework should enable both business and IT designs to focus specific layers and the establishment of the link to corresponding elements [10]. The term ‘reference’ also indicates that the framework is generic and can be used in similar companies.

The reference framework we propose contains three main parts: aspects, layers and five ways of Sol [25].

The top level of the cube shows some essential aspects of EA for the stakeholders. These aspects are adapted from a multi-client study by the Nolan Norton Institute [34], mainly because their study showed that the five aspects (governance, objectives, cost, capabilities and change-processes) are the primary IT concerns of 17 large companies.

The side level of the framework represents the five ‘ways of information systems’ suggested by Sol [25]. We believe that an explicit description of the ways of controlling, working, viewing, modeling and supporting are essential for architectural development.

Table 2. Application of the framework elements

<table>
<thead>
<tr>
<th>Elements</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governance</td>
<td>The governance structure is left implicit, some planning and control</td>
</tr>
<tr>
<td></td>
<td>mechanisms are in place steering the e-business projects on a global level.</td>
</tr>
<tr>
<td>Objectives</td>
<td>The objectives for the SAPCRM project are clearly documented and well</td>
</tr>
<tr>
<td></td>
<td>communicated throughout all countries. The objectives were formulated</td>
</tr>
<tr>
<td></td>
<td>using a top-down approach.</td>
</tr>
<tr>
<td>Cost-benefits</td>
<td>The costs of the project are estimated on a global level, the benefits</td>
</tr>
<tr>
<td></td>
<td>and risk (e.g. data migration and versioning) are not yet agreed upon.</td>
</tr>
<tr>
<td>Change process</td>
<td>The change processes required for the migration from the current CRM</td>
</tr>
<tr>
<td></td>
<td>platform to the future SAPCRM are not prescribed.</td>
</tr>
<tr>
<td>Capability</td>
<td>The required capabilities for the project are not stated in the project</td>
</tr>
<tr>
<td></td>
<td>documents.</td>
</tr>
<tr>
<td>Business</td>
<td>Stakeholder representatives are working on various business plans during</td>
</tr>
<tr>
<td>Architecture</td>
<td>the implementation of SAPCRM.</td>
</tr>
<tr>
<td>Organization</td>
<td>The roles of the actors are explicit while the responsibilities of the</td>
</tr>
<tr>
<td>Architecture</td>
<td>actors and their relationships with the other layers are vague.</td>
</tr>
<tr>
<td>Process</td>
<td>The CRM process architecture are well documented and communicated.</td>
</tr>
<tr>
<td>Architecture</td>
<td>The information objects and their relationships are not modeled.</td>
</tr>
<tr>
<td>Information</td>
<td>There is a static list of all the applications in the enterprise, however</td>
</tr>
<tr>
<td>Architecture</td>
<td>not in relation to the other layers.</td>
</tr>
<tr>
<td>Application</td>
<td>The infrastructure services required for CRM applications are clear,</td>
</tr>
<tr>
<td>Architecture</td>
<td>however, not in relation to the other layers.</td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>There are some generic cost, quality and security mechanisms defined and</td>
</tr>
<tr>
<td></td>
<td>used.</td>
</tr>
<tr>
<td>Way of</td>
<td>Architectural development is still intuitive and unstructured, except for</td>
</tr>
<tr>
<td>controlling</td>
<td>the process layer.</td>
</tr>
<tr>
<td>Way of</td>
<td>Generally, the three-tier view (presentation, logic and data) is used</td>
</tr>
<tr>
<td>working</td>
<td>for the categorization of (e-) business solutions. Other views are not</td>
</tr>
<tr>
<td></td>
<td>standardized.</td>
</tr>
<tr>
<td>Way of</td>
<td>No common modeling language is defined or used in the firm, except for</td>
</tr>
<tr>
<td>modeling</td>
<td>process modeling.</td>
</tr>
<tr>
<td>Way of</td>
<td>ARIS and maybe Casewise, however, there is no tool for modeling all</td>
</tr>
<tr>
<td>viewing</td>
<td>layers in relationship to each other (there is no integrated tooling</td>
</tr>
<tr>
<td></td>
<td>support).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. EVALUATION OF EA PURPOSES

Using a tabular structure, we present the application of the framework elements on the CRM case of the multinational. A comprehensive description of the case study can be found in [2]. The following table summarizes the main case study results.

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Ex-ante</th>
<th>Ex-post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive</td>
<td>Communication instrument</td>
<td>Analysis instrument</td>
</tr>
<tr>
<td>Prescriptive</td>
<td>Design instrument</td>
<td>Redesign Instrument</td>
</tr>
</tbody>
</table>

The cube front depicts the architecture layers as these four layers are already widely used for IT modeling throughout the firm.

In the following section, we illustrate the application of this framework and discuss the purposes of EA.

Application of the developed EA framework on the case study allowed us to identify four possible instrumental purposes of EA frameworks. The purposes are communication, evaluation, design and redesign instrument. The case study showed that without a repository-based tool containing descriptions of the enterprise’s processes, information objects and applications, EA is only useful as a communication and evaluation instrument. Considering the number of business processes and the underlying IT applications, a repository tool is essential in order for EA to be used as a design or redesign instrument.

Our findings are based on a single case, therefore we suggest further research on the use of EA for firms in the transition towards an e-business platform. We underline the need for more comprehensive repository based tooling support, supposedly with a modeling notation that is suitable to describe and relate both business (processes, structures and actors) and IT (information objects, applications and services).

9. REFERENCES


0 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: [www.igi-global.com/proceeding-paper/enterprise-architecture-evaluation/33196](www.igi-global.com/proceeding-paper/enterprise-architecture-evaluation/33196)

Related Content

A Study of Sub-Pattern Approach in 2D Shape Recognition Using the PCA and Ridgelet PCA

Clinical Use of Video Games
[www.irma-international.org/chapter/clinical-use-of-video-games/184038](www.irma-international.org/chapter/clinical-use-of-video-games/184038)

Big Data Summarization Using Novel Clustering Algorithm and Semantic Feature Approach

From the Psychoanalyst's Couch to Social Networks
[www.irma-international.org/chapter/from-the-psychoanalysts-couch-to-social-networks/184398](www.irma-international.org/chapter/from-the-psychoanalysts-couch-to-social-networks/184398)

Enhancement of TOPSIS for Evaluating the Web-Sources to Select as External Source for Web-Warehousing