
Managing Worldwide Operations & Communications with Information Technology 319

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Why Do Software Applications Fail and
What Can Software Engineers Do

About It? A Case Study
Peter Kueng, Credit Suisse, IT Architecture, 8070 Zurich, Switzerland; E-mail: pkueng@acm.org

Heinrich Krause, Credit Suisse, IT Architecture, 8070 Zurich, Switzerland

Abstract
In many of today’s companies application software has become a vital resource to
successfully run the business. Since outages of application software may lead to
operational and financial difficulties, companies have a vested interest to ensure
high availability of their application software. In this paper, data from Credit
Suisse, a large commercial bank operating internationally is examined. As a
first step, the main causes that led to outages are analyzed. The analysis shows
that administration-related tasks are the largest cause for application software
outages. On the other hand, the analysis reveals that outages due to hardware
failure plays an almost negligible role. In a second step, selected approaches on
how availability of applications can be improved are presented. One of the most
important means to reduce outages in our case is to address availability not only
with system and platform engineers, but with software engineers in particular,
since their awareness concerning availability has proven to be limited. Based on
that, a set of recommended practices to be addressed by software engineers has
been developed; a subset of them are presented here.

1. Introduction
More and more companies, in particular in the service industry, rely substantially on
application software. The product creation, sales and after-sales processes depend
heavily on up-to-date application software. Not only do company employees depend
on enterprise-owned application software intensively, but external stakeholders
such as private and corporate clients, providers, vendors and contractors also
depend on such applications. This also implies that in most companies the number
of software applications has increased over the years. In addition to that we have
to consider that companies today operate in different times zones as their partner
and branches are geographically dispersed. This in turn means that time periods
for maintenance work have become smaller over time. Furthermore, in the era of
the Internet, expectations in terms of availability, timeliness and response time
have increased. All of these aspects lead to higher, more ambitious requirements
in terms of availability. In short, many of today’s applications have to run in a 7
day by 24h mode, the number of outages must be minimal to non-existent, and
the time period to repair failures must be shortened.

The rest of the paper is structured as follows: Section 2 shortly describes the
company this paper is based on. Section 3 analyses the outages that occurred
within the last reporting period and shows the main causes. Section 4 presents
some possible approaches on how availability can be improved. Section 5 presents
selected software engineering-related approaches the company has chosen to
improve availability of its custom-built software. Finally, section 6 summarizes
the main points and states the main conclusions.

2. Company profile and IT infrastructure
The empirical data presented in this case study stem from Credit Suisse, a global
bank, operating in over 50 countries and headquartered in Zurich. The two main
lines of business are private/retail and investment banking. The company employs
over 40,000 people worldwide. The main geographic areas of employment are
Asia, USA, and Europe.

To support the many employees, clients, third parties and the underlying business
processes, hundreds of applications are in place and running today. Most of the
banking-related applications are built and supported by the company’s own IT
department. The internal IT department not only provides application development
and maintenance, but also systems engineering activities such as configuration
of servers, middleware, components and networks. All application software runs
in the internal data centre.

The number of applications we are concerned about in this study numbers ap-
proximately 300. The size of the application software is quite remarkable as it sums
up to more than 30 million lines of code. The programming languages used are
mainly PL/1 and Java. Some of the COTS applications are based on C and other
languages. The runtime platforms are Sun (Solaris) and IBM (z/OS).

3. Outages of application software
In order to improve availability of application software it is essential to know
current statistics. For example: how many outages occurred over a certain period
of time? What were the causes?

To properly understand the numbers given in Table 1, the measurement approach
applied at Credit Suisse is described below:

•	 Data sources used: To gather the outages during the last reporting period,
three different data sources were used: (a) outages reported by users; (b)
outages reported via robots (artificial users); (c) outages reported via systems
management software (in our case, Tivoli Enterprise Console is used)

•	 In scope: main banking applications (approximately 300)
•	 Out of scope: (a) industry-neutral support applications such as Microsoft

Outlook; (b) applications used by small number of people (<50).

How is an outage defined? In this paper, the terms outage and unavailability are
used interchangeably. Application unavailability or application outage means
– in accordance to IEEE (2002) – that an application is not accessible when it is
required for use.1 ‘When required for use’ implies two things, for each application
it must be known (specified) when the application is required for use and, second,
an outage of an application is handled as an outage only if the outage falls into the
period of time the application should be available. To practice the first aspect, the
SLA2 levels are used. At Credit Suisse every application must belong to one of
three SLA levels. The most demanding SLA level is called 7x24. It means that the
application should be available at all times.3 The second-highest SLA level requires
that applications are available from 6am to 11 pm; the third (lowest) SLA level
requires that applications are available from 6am to 7 pm. Outages of applications
that do not fall into these required up-times are not considered here.

Table 1 shows that a total of 222 outages have been registered during the last
reporting period. To identify the hot spots, these 222 outages have been grouped
into five categories: administration, software, hardware, environment, and unknown
causes. These categories have been used by Gray (1985), who published the
well-known causes of failures of Tandem systems. The use of the same categories
makes it possible to compare the results.

•	 Administration: 36 percent of outages were caused by administration-related
activities. Within this category the main cause for outages lies in operations

320 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

and configuration activities. To give a better idea of what is meant by op-
erations and configuration-related causes, some examples of causes – taken
from the outage reports – are listed: (a) “Database administration runs a job
which exclusively reserved a pointer checker”; (b) “Database xyz was not
available because of database reorganization”; (c) “Database reload locked
some DB2 tables”; (d) “Change of certificate was not accomplished prop-
erly”; (e) “Volume copy action blocks transactions”; (f) “Web server was
suspended”; (g) “Role for database access was removed”; (h) “Database
files were overwritten due to incorrect software distribution”; (i) “The power
for the technology centre wrongly switched off by construction worker!”.
Another subcategory of administration was labeled “unsatisfactory monitor-
ing”. Through a more intensive, and real-time monitoring, some outages
of application could have been prevented. “Low on disk space”, “too high
CPU load”, “queues were full” are typical examples that led to outages of
applications.

•	 Software: According to our outage reports, errors in software represent the
second largest cause that led to unavailable applications. Out of the 72 software-
related outages, 37 were caused by erroneous application software whereas
most of this software was custom-built. 35 outages were caused by incorrect
system software. The rather high ‘contribution’ of system software is surpris-
ing as this category of software runs in hundreds or thousands of companies.
What are examples of application software-related causes leading to outages?
A few examples are listed here: (a) “Data sharing caused deadlocks”; (b)
“An order without an amount was processed. This caused the crash of the
program”; (c) “Duplication of a row caused a SQL-811 error”; (d) “Trans-
action xyz fails due to deadlocks”; (e) “Functional error in application”.
As mentioned earlier, not only flaws in application software cause outages
but also erroneous system software. To illustrate this point again, a few
examples are given: (a) “Error in load balancer”; (b) “Deadlocks in DB2”;
(c) “Bug in operating system”; (d) “Database block is not working”; (e)
“Malfunction of router”.

•	 Hardware: Hardware-related outages were very rare. On the one hand,
hardware over the years has become more and more reliable. On the other
hand, monitoring of hardware components has become more common. In the
case of Credit Suisse, only four outages (2 percent) were caused by hardware.
In one instance, a broken fan led to an outage of the server, in another case
the memory of a server was defective, and in a third case the power supply
accumulator was damaged.

•	 Environment: The term ‘environment’ is vague. It has however been used
to make the results comparable to the ones published by Gray (1985). In
the case of Credit Suisse outages in the category ‘environment’ are mostly
related to communication problems with company-external systems. A few
examples which illustrate this are: (a) “No connection between Reuters and
Credit Suisse”; (b) “Wide area network broken”; (c) “Network switch lost
connection”; (d) “Fibre channel has been damaged”.

•	 Unknown: According to Table 1, some 48 cases (22 percent of all outages)
were not able to have been categorized properly. In a considerable number
of these cases, it was not possible to identify the root cause of the outage.
Many of the so-called unknown causes are transient and could not be traced.
Examples are: (a) Server was down; (b) Memory leak; (c) “Hanging process”;
(d) “Application not responding”.

When comparing the data gathered from Credit Suisse with those published
by Gray (1985), some interesting parallels arise. Firstly, both studies identify
administration-related work as the primary cause for outages (36 percent vs. 42
percent).4 The second most important ‘contributor’ to outages is the category of
the software. While 32 percent of the outages are caused by software, this category
accounts for 25 percent in the study of Gray (1985). However, Gray does mention
in his paper, that this category is probably under-reported.

According to Gray, hardware represents the third category of causes as they
caused 18 percent of outages at Tandem systems. In the case of Credit Suisse, the
numbers are quite different as hardware-related problems caused only 2 percent
of the outages. More than twenty years ago Gray wrote: “In the future, hardware
will be even more reliable due to better design, …” (1985, p. 12). Based on our
empirical data he was absolutely right.

4. How to improve availability?
Over the years a large number of approaches, methods, and techniques have been
suggested to improve availability and reliability5 of systems and software. It is
not the aim of this paper to present the sheer endless pallet of instruments sug-
gested by scholars and practitioners,6 instead, the aim is to illustrate the range of
possible approaches, with some (rather accidental) approaches being mentioned
in this section.

Probably the most commonly recommended approach is the use of N-Version
Programming (NVP) described by Avižienis/Chen (1977). This approach implies
that N-independent programs are executed in parallel on identical input, and the
results are obtained by voting upon the outputs from individual programs. In order
to ensure the development of independent program versions, different algorithms,
programming languages, environments and tools must be used. Theoretical as well
as empirical investigations indicate a positive effect of N-version programming
(see Cai/Lyu/Vouk (2005)).

According to Viega/Voas (2000), aspect-oriented programming helps to improve
availability and reliability as it offers powerful mechanisms for exception handling.
Widmaier et al. (2000) propose the use of formal specifications. Green (1997)
recommends to improve availability through the use of commercial off-the-shelf
components. Candea/Fox (2001) emphasize the importance of recursively restart-
able systems as they make it possible to restart collections of components/sub-
systems with little or no advance warning.

By reading the various views that address availability and reliability engineering,
one gets the impression that “you just have to do this” and everything will work
properly. According to Meyer (1999) each community defines “this” differently.
Meyer writes:

•	 the management school, which holds that all that really matters is better ap-
proaches in management;

•	 the formal specification school, which suggests we won’t achieve anything
unless we specify everything mathematically—and then we won’t need testing
at all;

•	 the testing school, which views formal specifications as an academic pastime
and believes that the only meaningful solution is to devise systematic testing
strategies;

Table 1: Reported outages at Credit Suisse and Tandem systems

	 Case Study Results from Gray
(1985)

Cause Number of outages Percent of outages Percent of outages
Administration 80 36% 42%
Software 72 32% 25%
Hardware 4 2% 18%
Environment 18 8% 14%
Unknown cause 48 22% 3%

Total 222 100% 103% 1

Managing Worldwide Operations & Communications with Information Technology 321

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

•	 the metrics school, which focuses on assessing everything quantitatively;
•	 the open source community, which believe that only by extensive public

scrutiny can we successfully develop reliable software”.

The message put forward by Meyer is clear: Although the different communities
claim to know what to do in order to improve availability there is no one best ap-
proach. Instead, problem and domain-specific approaches are more appropriate.

The richness of possible mechanisms to increase availability is well illustrated in
the book by Marcus/Stern (2003); see Fig. 1. This model is conceptual in nature and
does not attempt to graph particular levels of availability against specific amounts
of investments. However, Marcus and Stern recommend to start with ‘technologies’
(to use their term) situated at the bottom and to gradually increase.

5. What can software engineers do to improve
availability?
As the previous section shows, there is no shortage of potential mechanisms and
approaches to improve availability of application software. However, the mecha-

nisms and techniques to be applied depend on various factors; e.g. on the causes
that led to outages in the past, on the service or availability levels to be achieved,
on the infrastructure in place, on the current software development processes,
on awareness of software developers, etc.. Generally speaking, availability can
be influenced by two groups of stakeholders, the systems engineers who provide
the application platform the application runs on, and the software engineers who
develop the application software; see Fig. 2. In this paper we discuss approaches
to be applied be the software engineers.

To improve availability by means of software engineering we formulated twelve
so-called ‘recommended practices’. To give an idea how the issue is addressed at
Credit Suisse some examples of recommended practices are presented here.

Two aspects have to be noted: (a) The recommended practices have not been
deduced formally. They are based on both a gap analysis and best practices ap-
plied in selected areas. (b) The recommended practices are not universally valid.
They fit to our environment.

A. Anticipate Outages of Subsystems and Components
Rationale: Applications are composed of subsystems and components. An outage
of such a part should not lead to a full outage of the application. The impact to
the user should be minimal.

Tasks for the Software Engineers:
•	 Ensure that an outage of a subsystem or a component (which are part of the

application being built) has no or minimal impact on the use of the applica-
tion.

Example: In an online-banking application for instance, an outage of the payments
module should not impact the functions provided for brokerage.

B. Minimize Exclusive Use of Shared Data in Terms of Scope and Time
Rationale: If large portions of a database are exclusively used by a single ap-
plication, or if small portions of a database are locked for long periods of time,
other applications are negatively impacted in terms of availability. Therefore the
portion of data exclusively used by one application at a certain moment in time
should be as small as possible.

Tasks for the Software Engineers:
•	 Minimize exclusive use of shared data in terms of scope and time.
•	 Keep the Logical Unit of Work7 short.

Figure 1. Ten availability technologies (taken from Marcus/Stern, 2003, p.51)

Figure 2. Leveraging availability by system and software engineers

Application Software

Hardware

System Software &
Middleware Application Platform

Networks

Software Development

determines

runs on a

domain of System Engineers

domain of Software Engineers

determines

Availability Modularity

322 2007 IRMA International Conference

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Example: An end of day batch job must not exclusively reserve tables of an
online application.

C. Select Appropriate Processing Mode
Rationale: In terms of processing modes, there are two extremes: real-time
processing (e.g. on-line transaction processing) and batch processing (e.g. end of
day processing). In between there are two other options: asynchronous processing
and asynchronous processing plus latency.

Synchronous processing (real-time processing) requires that all components
involved are able to execute the requests immediately (i.e. in the same logical
unit of work). This may in turn negatively impact availability and robustness of
the applications being built. From an availability point of view, the synchronous
processing mode should be implemented only when absolutely necessary; i.e.
when immediate response and timeliness of data are critical.

Tasks for the Software Engineers:
•	 Use asynchronous processing as much as possible.

Example: To create a statistical report, synchronous processing is not required.
From an availability point of view, asynchronous processing plus latency is
more appropriate.

D. Test Behavior of Application when Selected Components and Interfaces
are ‘Switched Off’
Rationale: It must be guaranteed that mechanisms which have been implemented
to treat unavailable or malfunctioning components/interfaces function as planned.
Failures of one or several parts of a system must be observed. The planned utiliza-
tion of imperfect parts (components, interfaces, etc.) is sometimes called “fault
injection testing”.

Tasks for the Software Engineers:
•	 Identify the application-internal and application-external availability-critical

components and interfaces that may fail. Test the behavior (robustness) of the
application by ‘switching-off’ (or not providing) selected components and
interfaces.

•	 Specify the required test environment and test cases.

Example: When an online-banking application is to be tested, the interface pro-
viding the current exchange rates should be switched off in order to check
whether the application’s behavior is compliant to the design.

E. Build Applications that Require No Manual Administration
Rationale: Since human error is a leading cause of downtime, one important
way to improve availability is to reduce the number of mistakes that humans
(administrators) can make on critical systems. By making systems simpler you
do just that. Simpler systems require less administrative attention, so there is
less chance for human error which can lead to an outage of the application, see
Marcus/Stern (2003), p. 103.

Tasks for the Software Engineers:
•	 Build applications that require no manual administration or intervention.
•	 If manual administration cannot be made obsolete, incorporate a mechanism

that checks the outcome of tasks performed immediately. It must not be the
case that an incorrect execution is detected with delay.

•	 Design all applications in such a way that they can be run in a 7x24h mode.

Example: If an application has been designed in such a way that a periodical
reorganization of the database has to be initiated manually, then the principle
mentioned above is not met.

6. Conclusions
The analysis of 222 outages of application software shows that (a) administra-
tion-related task are the largest cause of application software unavailability, (b)
imperfect software (custom-built application software and system software) rep-

resents the second largest contributors, (c) environment-related causes ‘occupy’
the third place, and (d) outages of applications caused by defective hardware is
very rare in the company considered.

As there is no best approach to improve availability, the various options have to
be considered. They include systems management-related approaches such as
disk and volume management and the use of redundant hardware as well as more
application software-related approaches. In our case the focus has been put on the
second category, since the potential to improve availability has been considered
as being most effective in this area.

Where do we stand today at Credit Suisse? Twelve so-called recommended practices
have been defined and communicated to software engineers. None of these recom-
mended practices require additional infrastructure in order to be implemented. The
enforcement of these practices takes place on the one hand via company-internal
education. On the other hand, software engineers have to demonstrate just how
the recommended practices have been applied in their software development
projects. The initial feedback from software engineers has been quite positive.
They now see the software development discipline broader than before (as many
of them have not spent a lot of attention to availability issues in the past) and,
not of lesser importance, the teamwork between system engineers and software
engineers has become closer.

The primary conclusion is as follows: Every company who builds and uses ap-
plication software to a larger extent should analyze the causes of outages carefully.
Based on both the cause analysis and the mechanisms already in place, company-
specific measures can be taken. If these two steps are omitted, inadequate or even
useless actions might be implemented, which in turn, lead to unnecessary costs.
Our impression is that the power of system and hardware-related mechanisms
to improve availability is overestimated, while software engineering-based ap-
proaches are not adequately rated. One reason behind that behavior might be
that some mechanisms addressing the first category can be bought, while the
second category has to be addressed mainly via awareness, motivation, education,
inspiration, and knowledge.

Finally, our literature research has revealed that the issue of availability of ap-
plication software has not been intensively addressed up to now. In particular,
software-engineering related approaches, to ensure high availability of large sets
of applications, have been treated only fragmentarily. From our perspective, this
in turn means that it would be fruitful for the software engineering community to
further consider this topic in future research and teaching activities.

7. References
Avižienis/Chen (1977). Avižienis, Algirdas; Chen, L.: On the Implementation

of N-Version Programming for Software Fault Tolerance During Execution.
Proceedings of the Computer Software and Applications Conference, Annual
International (COMPSAC’97), IEEE, pp. 149-155.

Candea/Fox (2001). Candea, George; Fox, Armando: Designing for High Avail-
ability and Measurability. Proceedings of the 1st Workshop on Evaluating
and Architecting System Dependability (EASY’01), IEEE.

Cai/Lyu/Vouk (2005). Cai, Xia Cai; Lyu, Michael R. Lyu; Vouk, Mladen: An
Experimental Evaluation on Reliability Features of N-Version Programming.
Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering (ISRE’05), pp. 161-170.

Gray (1985). Gray, Jim: Why Do Computers Stop and What Can Be Done About
It? Tandem Computers, Technical Report 85.7, June 1985.

Green (1997). Green, Paul. The Art of Creating Reliable Software-based Systems
using Off-the Shelf Software Components. Proceedings of the 16th Symposium
on Reliable Distributed Systems (SRDS’97), IEEE, pp.118-120.

IEEE (2002). IEEE Standard Glossary of Software Engineering Terminology.
Std 610.12-1990(R2002).

Lyu (1996). Lyu, Michael: Handbook of Software Reliability Engineering. IEEE
Computer Society Press and McGraw-Hill, 1996.

Marcus/Stern (2003). Marcus, Van; Stern, Hal: Blueprints for High Availability.
Wiley Publishing, Indianapolis, 2003.

Meyer (1999). Meyer, Bertrand: Every Little Bit Counts – Toward More Reliable
Software. IEEE Computer, Vol. 32, Issue 11, Nov 1999, p. 131-135.

Oppenheimer et al. (2003). Oppenheimer, David; Ganapathi, Archana; Patterson,
David: Why Do Internet Services Fail, and What Can Be Done About It?
Proceedings of the Usenix Symposium on Internet Technologies and Systems
(USITS’03), pp. 1-16.

Managing Worldwide Operations & Communications with Information Technology 323

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Viega/Voas (2000). Viega, John; Voas, Jeffrey: Can Aspect-Oriented Programming
Lead to More Reliable Software? IEEE Software, Vol. 17, Issue 6, Nov/Dec
2000, pp. 19-21.

Widmaier/Smidts/Huang (2000). Widmaier, James; Smidts, Carol; Huang, Xin.
Producing More Reliable Software – Mature Software Engineering Process vs.
State-of-the-Art Technology? Proceedings of the 22nd International Confer-
ence on Software Engineering (ICSE), ACM Press, 2000, pp. 88-93.

endnote
1	 Availability is defined as follows: “The degree to which a system or component

is operational and accessible when required for use.” IEEE (2002).
2	 SLA stands for Service Level Agreement

3	 To be precise, even in a 7 by 24h operation mode short periods of time for
maintenance work (e.g. deployment of new versions) are inevitable. These
periods of unavailability depend on the type of software. E.g. for the soft-
ware that controls the cash machines the interruptions should be below one
minute.

4	 The relevance of administrator-related failures is further supported by the
empirical study of Oppenheimer et al., (2003).

5	 “Reliability. The ability of a system or component to perform its required
functions under stated conditions for a specified period of time.” (IEEE,
2000).

6	 A good overview can be found in Lyu (1996)
7	 A logical unit of work is a set of transactions where either all are successfully

applied against the database, or none have any impact on the database.
8	 This number (103%) has been taken from Gray (1985).

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/proceeding-paper/software-applications-fail-can-software/33081

Related Content

Challenges in Big Data Analysis
M. Govindarajan (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 577-585).

www.irma-international.org/chapter/challenges-in-big-data-analysis/260215

Social Media Development, Usage, Challenges, and Opportunities
Samaneh Beheshti-Kashiand Baharak Makki (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 6773-6780).

www.irma-international.org/chapter/social-media-development-usage-challenges-and-opportunities/113141

A Comparative Analysis of a Novel Anomaly Detection Algorithm with Neural Networks
Srijan Das, Arpita Dutta, Saurav Sharmaand Sangharatna Godboley (2017). International Journal of Rough

Sets and Data Analysis (pp. 1-16).

www.irma-international.org/article/a-comparative-analysis-of-a-novel-anomaly-detection-algorithm-with-neural-

networks/186855

A Framework for Self-Regulated Project-Based Learning in Higher Education
Mohamed Yassine Zarouk, Francisco Restivoand Mohamed Khaldi (2019). Educational and Social Dimensions

of Digital Transformation in Organizations (pp. 218-273).

www.irma-international.org/chapter/a-framework-for-self-regulated-project-based-learning-in-higher-education/215144

An Eco-System Architectural Model for Delivering Educational Services to Children With Learning

Problems in Basic Mathematics
Miguel Angel Ortiz Esparza, Jaime Muñoz Arteaga, José Eder Guzman Mendoza, Juana Canul-Reichand

Julien Broisin (2019). International Journal of Information Technologies and Systems Approach (pp. 61-81).

www.irma-international.org/article/an-eco-system-architectural-model-for-delivering-educational-services-to-children-with-

learning-problems-in-basic-mathematics/230305

http://www.igi-global.com/proceeding-paper/software-applications-fail-can-software/33081
http://www.igi-global.com/proceeding-paper/software-applications-fail-can-software/33081
http://www.irma-international.org/chapter/challenges-in-big-data-analysis/260215
http://www.irma-international.org/chapter/social-media-development-usage-challenges-and-opportunities/113141
http://www.irma-international.org/article/a-comparative-analysis-of-a-novel-anomaly-detection-algorithm-with-neural-networks/186855
http://www.irma-international.org/article/a-comparative-analysis-of-a-novel-anomaly-detection-algorithm-with-neural-networks/186855
http://www.irma-international.org/chapter/a-framework-for-self-regulated-project-based-learning-in-higher-education/215144
http://www.irma-international.org/article/an-eco-system-architectural-model-for-delivering-educational-services-to-children-with-learning-problems-in-basic-mathematics/230305
http://www.irma-international.org/article/an-eco-system-architectural-model-for-delivering-educational-services-to-children-with-learning-problems-in-basic-mathematics/230305

