Agile Practices, Promises of Rigor, and Information Systems Quality

Sue Kong, PhD Program, #79, Rutgers Business School, Newark and New Brunswick, Rutgers University, Newark, NJ 07102, T: (973) 946-3680, F: (973) 833-0429, sukong@pegasus.rutgers.edu

Kenneth E. Kendall & Julie E. Kendall
School of Business Camden, Rutgers University Camden, NJ 08102, T: (856) 225-6586, F: (856) 424-6157, (ken, julie)@thekendalls.org

INTRODUCTION

It has been widely recognized that the plan-based, process-centric and formal systems development methodologies (e.g., Systems Development Life Cycle) are well suited for predictable environments, but lacking in environments with substantial uncertainty (Boehm, 2002, 2003a, 2003b, 2004a, 2004b). In order to cope with uncertainty, practitioners (Beck, 1999; Beck and Fowler, 2001; Cockburn, 2002 and 2004; Schwaber and Beedle, 2002) introduced agile approaches, which are people-centric, less formal, iterative and adaptive.

Debates have been raised around agile approaches, especially on the quality effects of agile approaches. Specifically, some researchers believe that agile approaches cannot achieve persistent high systems quality because the constant adaptation will introduce design flaws and coding errors (Pauk, 2001 and 2002). Conversely, other researchers argue that agile methodology increases quality of information systems due to its customer centric and adaptive approach (Armitage, 2004, Huo, Verner, Zhu and Ali Babar, 2004; Oppenheuser, 2005). The inconclusive debates around the quality effect of agile approaches have caused great confusion and misunderstanding. The scrutiny of this issue, the impact of agile approaches on quality of the information systems, thus becomes emergent to the research community. However, to our best knowledge, the contemporary literature has largely neglected systematic study of this research question.

This paper will examine the impact of agile approaches on the quality of information systems theoretically and empirically. Specifically, we will employ a survey study among information systems personnel to verify our hypothesis drawn from theoretical study. This research will expand our knowledge and inform practitioners.

DEFINITION AND MEASUREMENT OF QUALITY OF INFORMATION SYSTEMS

Quality definition originated from the manufacturing industry. The classic quality definitions include “fitness for use” and “customer satisfaction” (Juran, 1999). Similarly, the Institute of Electrical and Electronics Engineers (1987) defines software quality as “the totality of features and characteristics of a software product that bear on its ability to satisfy given needs.” Because information systems are one type of software, we believe that this software quality definition also applies to information systems.

DeLone and McLean (1992 and 2002) presented a well known model, D&M Information Systems Success Model (the “D&M Model”), for measuring the effectiveness of information systems. This model consists of six important systems success measures, they are: Systems Quality, Information Quality, Service, Use, User Satisfaction and Net Benefits (DeLone and McLean, 2002). While the D&M Model organizes and resolves the seemingly conflicting arguments regarding the measurement of information systems success, it only addresses the dependent

variables (the output of the development process) and leaves the independent factors that lead to systems success outside the scope. We believe the inclusion of the independent factors, such as the system development methodology, will provide an insightful way to evaluate the various software development methodologies and practices.

RESEARCH MODEL AND SURVEY DESIGN

Kendall, Kendall and Kong (2006) believe that the quality of the information systems is highly dependent on the practices and values of the people who develop and implement the systems. Based on the understanding that agile methodology first impacts individual information systems personnel (developers, testers, managers, etc.) through agile practices, principles and values, then affects the team dynamics, and finally influences the quality of information systems (which could be measured by the dependent variables), we propose our research model as Figure 1.

Drawn from our model, we hypothesize the following:

H1: Agile methodology usage is positively associated with net benefits for information systems personnel.

H2: Net benefits for information systems personnel are positively associated with net benefits for team.

H3: Net benefits for team are positively associated with information quality of the delivered systems.

H4: Net benefits for team are positively associated with systems quality.

Figure 1: The Impact of Agile Approaches on the Quality of Information Systems

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
H,: Net benefits for team are positively associated with service quality of the delivered systems.

A survey study will be conducted to examine the impact of agile approaches on the quality of information systems. Because values and principles are hard to detect and measure, this study will focus on agile practices. Specifically, through literature review, we will identify a typical set of agile practices among other widely used vigorous software practices for research. We will then survey information systems personnel on their view of the impact of agile methodology on them and their team and on the various quality aspects of the delivered systems. Furthermore, we’d like them to identify what software practices, agile or vigorous, tend to improve the quality of the systems.

As suggested by Churchill (1979), Straub (1989), Moore and Benbasat (1991) and Chin, Gopal and Salisbury (1997), our survey study will be divided into the following three stages:

1. Item Creation Stage. At this stage, we will focus on literature review and developing the questionnaire. We plan to use the constructs of our research model as the basic items for the questionnaire. Agile methodology usage is measured using the items from Henderson and Cooprider (1990) and Collins and King (1988), including frequency of use, degree of use, time of use, proficiency and dependency. These items will then be reviewed by field experts to validate the content validity to ensure that these items do reflect the construct of interest appropriately. A pilot questionnaire will be developed at the end of this stage.

2. Pilot Study Stage. Before conducting the survey, a pilot study will be conducted with a convenient sample of 10 users. The purpose of the pilot study is two fold: i) to check how long the survey will take and collect respondent’s feedbacks to further revise the questionnaire; ii) to assess the construct validity and reliability of the questionnaire. We will use factor analysis to assess the construct validity and finalize the questionnaire.

3. Full Scale Survey. The finalized questionnaire will be distributed to respondents and the results will be analyzed. The population for the full scale survey is information systems personnel, such as managers, programmers, testers, in selected organizations. We will select three (“3”) to five (“5”) organizations of various sizes and in various industries and send their information technology department an invitation asking them to fill out the survey. Most surveys will be conducted online because online surveys can overcome the geographic limitation as well as being cost-saving. Once a satisfactory number of answers are collected; we will carry out statistical analysis of the survey results.

We are currently in the process of finalizing the questionnaire and looking for organizations to collect data.

CONTRIBUTION AND FUTURE STUDY

This research has the following contributions:

• The dynamics of various agile practices. Certain agile practices, such as design simplicity, don’t work well independently. Such agile practices much be utilized in certain combination in order to achieve good quality results. Understanding the dynamics among agile practices will help us to deploy agile approaches effectively.

• The suitability of agile approaches with organizational and project context. Agile approaches are not universal solutions. For example, some practitioners found agile approaches not work well in organizations that emphasize optimization; other practitioners claimed that agile approaches did not work well with life critical systems. Identifying the suitable organizational and project context for agile approaches will lower the chance of failure.

REFERENCES

Addison Wesley, Boston, 1999.

Boehm, B. (2002). “Get ready for agile methods, with care,” Computer,

and agility,” Proceedings of the Agile Development Conference,

Boehm, B. and R. Turner (2003b). “Using risk to balance agile and plan-
driven methods,” Computer, Vol. 36, Issue 6, June 2003, pp.57-
66.

Evaluating and Integrating Agile and Plan-Driven Methods,”
Proceedings of the 26th International Conference on Software

theory of adaptive structuration: The development of a scale to
measure faithfulness of appropriation,” Information Systems

marketing constructs,” Journal of Marketing Research,
Vol. 16, pp. 64-73.

Cockburn, A. (2002). Agile Software Development, Boston, Addison-
Wesley, 2002.

for Small Teams, Boston, Addison-Wesley, October 2004.

Collins, P. and D. King (1988). “The Implications of CAD for work and
performance,” The Journal of Applied Behavioral Science,

Cronbach, L.J. (1951). “Coefficient Alpha and the international consis-
297-334.

Cronbach, L.J. (1971). “Test Validation,” in Educational Measure-
ment, 2nd Edition, R.L. Thorndike (eds.) American Council on

Revisited,” Proceedings of the 35th Hawaii International Confer-
ence on Systems Sciences (HICSS-35’02), 2002.

The Quest for the Dependent Variable,” Information Systems

design aids: a functional model of CASE technology,” Information

and Agile Methods,” Proceedings of the 28th Annual Inter-
ational Computer Software and Applications Conference
(COMPSAC’04), 2004.

ENDNOTE

The satisfactory sample size can be calculated as suggested by Kendall and Kendall (2005, p. 126).
Related Content

A Fuzzy Knowledge Based Fault Tolerance Mechanism for Wireless Sensor Networks
www.irma-international.org/article/a-fuzzy-knowledge-based-fault-tolerance-mechanism-for-wireless-sensor-networks/190893

Semantic Image Retrieval
www.irma-international.org/chapter/semantic-image-retrieval/113057

Theoretical Analysis of Different Classifiers under Reduction Rough Data Set: A Brief Proposal
www.irma-international.org/article/theoretical-analysis-of-different-classifiers-under-reduction-rough-data-set/156475

FLANN + BHO: A Novel Approach for Handling Nonlinearity in System Identification
www.irma-international.org/article/flann--bho/190888

Advanced Real Time Systems
www.irma-international.org/chapter/advanced-real-time-systems/112398