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ABSTRACT
A new intelligent computational paradigm based on the use of Kalman
filtering technique [4] modified to reconstruct the dynamic behavior of
the physical and electrical characteristics provided via reconstructive
SAR imagery. As a matter of particular study, we develop and report the
Kalman filter-based algorithm for high-resolution intelligent filtration
of the dynamic behavior of the hydrological indexes of the particular
tested remotely sensed scenes. The simulation results verify the effi-
ciency of the proposed approach as required for decision support in
environmental resources management.

INTRODUCTION
Modern applied theory of reconstructive signal and image processing for
environmental monitoring and resource management [8] is now a
mature and well developed research field, presented and detailed in many
works ([1], [2], [3] are only some indicative examples). Although the
existing theory offers a manifold of statistical and descriptive regular-
ization techniques to tackle with the particular environmental monitor-
ing problems, in many application areas there still remain some
unresolved crucial theoretical and data processing problems related
particularly to the extraction and enhancement of environmental
characteristics for decision support in environmental management and
end-user computing aspects that incorporate the high-precision filter-
ing techniques for evaluation and prediction the dynamic behavior of the
particular extracted environmental processes.

In this study, we undertake an attempt to develop and verify via
computational simulations a new intelligent filtering method that
provides the possibility to track, filter and predict the dynamical
behavior of a physical characteristics extracted from the remotely
sensed scenes provided with the real-world high-resolution SAR data as
it is required for decision support in environmental resources manage-
ment. The proposed methodology aggregates the Kalman filtering
technique [4] with the high-resolution algorithms for enhanced SAR
imagery [1], [5]. In the simulations, we tested the data provided with the
spaceborne SAR with fractionally synthesized array [1], [2].

MATHEMATICAL MODEL OF THE LINEAR DYNAMIC
PROBLEM
Consider the following model of the Equation of Observation (EO)
in continuous time [6]

)())(()( tntStu += λ             (1)

where n(t) is the White Gaussian Noise and Tt ∈ , starting at t
0
 (initial

instant of time). Regarding the signal process, the following linear
amplitude-modulated model S(l(t)) is considered,

)()())(( 0 tSttS λλ =             (2)

where S
0
(t) is the deterministic “carrier” signal of a given model, and l(t)

is the unknown stochastic information process to be estimated via
processing (filtration) of the observation data signal u(t). Regarding l(t),
it is considered that it satisfies some dynamical model specified by the
following linear differential equation
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The stochastic model can be redefined as follows: the differential
equation (3) may be transformed into a system of Linear Differential
Equations of order 1 via performing replacement of variables [6], and
may be represented in a canonical vector-matrix form
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Considering that x(t)=x(t) is white noise, the statistics are 0)( =tξ  and

)'()()'()( tttPtt −=∗ σξξ ξ  [6], where P
x
(t) is the Disperse Function that

represents the dynamics of the process variance developed in a continu-
ous time. Accepting the model of the information process and output
of a Linear Dynamic formation system defined above, the Equation of
Observation can be defined as follows

)()()()()()()()( tttttttt nzHnzCSu 0 +=+=             (5)

where )()()( ttt CSH 0= . This model allows formal generalization of

an arbitrary m-channel observation u(t). The aim of the Linear Dynamic
Filtration is to find an optimal estimate of the information process l(t)

in current time t ( tt →0 ) via processing the information data vector

z(t) taking in account the a-priori dynamic model of l(t). In other words,
one have to design the optimal dynamic filter that when applied to the
observation vector u(t) provides the optimal estimation of the desired
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process that satisfies the a-priori dynamic model specified by the
stochastic dynamic state equation [6].

)(ˆ)()(ˆ ttt zC� = .            (6)

The Canonical Discrete Form of a LDS represented in state variables
is [6]
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where IF� +∆= ttk k )()(  and ttk k ∆= )()( G� . In this case, the Eq.

(5) in discrete time becomes

)()()()( kkkk nzHu += .            (8)

The statistical characteristics of the a-priori information in discrete
time are [6]

• Model Noise (initializing or generating model) {x(k)}: 0� =)(k ;

),()()( jkjk
�

P�� =∗ .

• Observation Noise {n(k)}: 0n =)(k ; ),()()( jkjk nPnn =∗ .

• Random State Vector {z(k)}: )0()0( zmz = ; )0()0()0( zPzz =∗ .

The Disperse Matrix P
z
(0) (initial state) satisfies the following

Disperse Dynamic equation

)()()()()()()1()1()1( kkkkkkkkk ++∗ +=++=+ �P��P�zzP
�zz .          (9)

STRATEGY OF OPTIMAL DYNAMIC KALMAN FILTER
The Kalman filter is an estimator used to estimate the state of a Linear
Dynamic System (LDS) perturbed by white Gaussian noise using measure-
ments that are linear functions of the system state corrupted by additive
white Gaussian noise. The mathematical model used in the derivation of
the Kalman filter is a reasonable representation for many problems of
practical interest, including control problems as well as estimation
problems. The Kalman filter model is also used for the analysis of
measurements and estimation problems [4]. The optimal strategy is to
design an optimal decision procedure (optimal filter) that, when applied
to all registered observations, provides an optimal solution to the state
vector z(k) subjected to it’s a-priori defined dynamic model given by the
Statistic Dynamic Equation (SDE). The Optimal Estimate is defined
as optimal in the sense of the Bayesian Minimum Risk Strategy (BMR)
[6 ]
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zz = .          (10)

In discrete time, the design procedure is based on the concept of
mathematical induction, that is, suppose that after k observations

)}(),...,1(),0({ kuuu , one had produced the desired optimal estimate de-

fined for the ultimate step

opt

kk )(ˆ)(ˆ zz = .          (11)

The problem is as follows: using this estimate 
opt

k)(ẑ  is necessary to design

the algorithm for producing the optimal estimate z(k+1) incorporating
new measurements u(k+1) according to the State Dynamic Equation
(SDE), this estimate must satisfy the dynamic equation

)()()()()1( kkkkk ξ�z�z +=+ .          (12)

According to the dynamicl model, the anticipated mean value becomes

)(ˆ)1()1()1( kkkk zzzmz +=+=+ .          (13)

Thus, mz(k+1) must be considered as a-priori conditional mean-value of
the stat vector for the next (k+1) estimation step, according to the
z(k+1) model

)(ˆ)()(),...,1(),0()()1( kkkuuukk z��z�mz =+=+ ξ .          (14)

That is why the prognosis of the mean-value of the next step becomes

)(ˆ)1( kk z�m z =+ . Now it is possible to reduce the estimate strategy to

the one-step optimization procedure:

Fig. 1. Implementation Signal Flow Diagram

Fig. 2. Tested SAR image
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Fig. 3. Dynamics of hydrological indexes (in the normalized virtual
time)
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For the ultimate (k+1) step of measurements, the Equation of Obser-
vation becomes [6]

)1()1()1()1( ++++=+ knkkku zH          (16)

with the summarized a-priori information given by Eq. (14). Applying
the Bayesian-Wiener time [6],

[ ])1()1()1()1()1()1(ˆ ++−++++=+ kkkukkk zz mHWmz           (17)

where the Dynamic Filter Operator is specified as follows,
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The Figure 1 shows the Optimal Procedure of the discrete Kalman filter
technique in a flow diagram form. The Optimal Procedure is defined by
the Stochastic Dynamic State Equation [6]

[ ])(ˆ)()1()1()1()(ˆ)()1(ˆ kkkkkkkk z�HuWz�z +−+++=+           (19)

The model of the problem is applied considering that H(k) is the Signal
Formation Operator (SFO) that corresponds to the SAR imaging system
[1]. The particular SFO was modeled by the sinc-type spectral ambiguity
function [9]. The z(k) is the observation data vector from the image,
u(k) is the observation data vector contaminated by additive Gaussian
noise, and l(k) is the dynamically filtered information process.

The data dynamics was approximated by the following model
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SIMULATIONS AND CONCLUDING REMARKS
In the simulations, we considered the SAR with partially/fractionally
synthesized array [1], [2] as a prime remote sensing imaging system.
Figure 2 shows the 2-D 256-by-256 pixel format original scene image
provided by the carrier SAR sensor system in 2005. This data was
borrowed from the real-world remotely sensed SAR imagery of the tested
scene of the Guadalajara region (Forest of Primavera) in Mexico. To
study the dynamics of the particular hydrological indexes [3] of these
scenes that were considered as the particular physical characteristics of
interest, the experimental data covered the period of expertise from the
year 2000 up to the year 2005, respectively. Figure 3 shows the results
obtained with the application of the Kalman technique algorithm
summarized in the previous section for enhanced filtering of the
dynamics of the hydrological indexes [3] of the tested scenes, studied
in the normalized virtual time [7] related to the physical time of the
dynamics of the characteristics under our particular study. In the
reported simulations we applied the a priori dynamic scene information
modeled by Eq. (19).

This study intends to establish the foundation to assist in understanding
the basic theoretical aspects of how to aggregate the enhanced SAR
imaging techniques with Kalman filtering for high-precision intelligent
filtration of the dynamical behavior of the physical characteristics of
the remotely monitored scenes for decision support in environmental
resources management. In our particular study, the dynamics of the
hydrological indexes of the SAR maps of the particular tested terrestrial
zones (Guadalajara region) were processed. The reported results can be
also expanded to other fields related to the study of the dynamical
behavior of different physical characteristics provided by remote
sensing systems of other particular applications. The reported results
of simulation study are indicative of a usefulness of the proposed
approach for monitoring the physical environmental characteristics,
and those could provide a valuable support in different environmental
resource management applications.
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