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ABSTRACT

Data warehouse applications increasingly must update and maintain data
in real time while simultaneously executing efficient OLAP (Online
Analytical Processing) queries. The size and corresponding perfor-
mance challenges of these data warehouses are growing at a staggering
rate. This paper introduces, MDDC, a new technique that supports
efficient OLAP queries without the extensive use of materialized views
or secondary indexes. This technique is dynamic and does not require
data reorganization. This is especially important for real-time data
warehouses that must continually update data without downtime to
reorganize data structures. This technique is similar to MHC (Multidi-
mensional Hierarchical Clustering) but provides better symmetry and is
completely dynamic. MDDC could utilize any number of host data
structures including B-trees.

INTRODUCTION
Multidimensional data structures are very important for data warehouse
and OLAP applications [kimball:98].

MHC
MHC (Multidimensional Hierarchical Clustering) combines Z-ordering
and hierarchical clustering. In this section we review these concepts.

Z-ordering

MHC is partially based on the concept of bit interleaving from Z-ordering
[orenstein:84,orenstein_:86]. This technique maps multidimensional
spaces to one-dimensional spaces. When the Z-ordering curve is mapped
in two dimensions it has a distinctive Z shape, hence the name.

The Z-ordering technique shuffles or interleaves the bits from multiple
keys together to form one contiguous key. Consider a composite
multidimensional key made up of the keys or dimensions A, B, and C.
Assume that each key is 3 bits long. Given a set of values for A, B, and
C of {101, 110, 001}, a new interleaved key or Z-address takes the first
bit from each of the three keys, then the second bit, and finally the third
bit from each key so that the resulting single key in interleaved bit
format is 110010101.

Formally, a Z-address Z(k) is the ordinal number of a multidimensional
composite key k from a tuple or record on the Z-curve and is calculated
as follows:

s1 d
Z(k) = X Xk, o2(jed+i-1)
j=0 i=0

The problem with Z-ordering relates to its requirement for a predeter-
mined number of bits in each key coupled with differences in entropy
among participating dimensions. A dimension has maximum entropy

when it enumerates the maximum number of dimension key values with
the minimum number of bits. The maximum entropy E or minimum
number of bits for a dimension D with K keys is:

E = ceiling(log,(K))

Consider datawith two dimensions D, and D,. If dimension D, has 32 key
values and a corresponding entropy of 5 bits while D, has 100 key values
and a corresponding entropy of 32 bits, then dimension D, probably will
dominate the collating sequence of the B-tree. Accordingly, queries
restricting only D, will be efficient while those only restricting D, will
not be efficient. This problem prevents balanced query performance and
renders Z-ordering ineffective in producing symmetric access to OLAP
data. The Z-ordering technique could use 7 bits for D, to improve
symmetry but would limit the number of keys in this dimension to 128
without a complete reorganization of the data.

Hierarchical Clustering

MHC is also partially based on hierarchical clustering. Hierarchical
clustering is a method that controls key values and structures these key
values specifically for queries. Hierarchical clustering capitalizes on the
fact that data is often composed of hierarchies. As an example, a
customer dimension might contain customers each of which are related
to one city. The customer dimension might further assign each city to
a state and each state to a region. Hierarchical clustering incorporates
these hierarchies into keys and their corresponding indexes. MHC
extends this concept to multidimensional data.

To accomplish hierarchical clustering, MHC uses compound surrogate
keys. These keys reserve a fixed number of bits for each level in a
dimensional hierarchy. The fixed number of bits at each level depends
on the number of unique values for all keys or parent keys of that level
in the dimension hierarchy. For instance if the customer dimension has
6 regions overall, the maximum number of states in any of the 6 regions
is 20, the maximum number of cities in any state is 150, and the
maximum number of customers in any city is 17, then the compound
surrogate would require 3 bits for the region level, 5 bits for the state
level, 8 bits for the city level, and 5 bits for the customer level.
Therefore the customer dimension would require a total of 21 bits for
each of its primary keys. MHC also makes provision for variable length
compound surrogate keys in the event that different keys have different
numbers of hierarchical levels or unbalanced hierarchies but, MHC does
not make provision for variable length bit strings for each hierarchical
level individually. 1f MHC requires 8 bits for the city level in the
customer dimension, then any primary key from the customer dimen-
sion that includes the city level must include all 8 bits and no state can
contain more than 256 cities [markl:99]. The primary key structure for
this customer dimension is shown in Table 1.

As just demonstrated, if MHC designates too few bits for a given
hierarchy level, then the data might exceed this threshold and require
full reorganization of all data structures that include the affected
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Table 1: MHC Compound Surrogate for Customer Dimension

REGION STATE

001 10101

CITY | CUSTOMER
00100001 00011

dimension before MHC can process any further updates. If MHC
designates too many bits for a given hierarchy level, then some bits of
the hierarchy level might remain empty for all data and therefore cause
symmetry problems. Similarly, if one parent in a dimensional hierarchy
contains 50 children when another parent on the same level in the
dimension contains 3 children, then queries searching for children of the
parent with 3 children or other parents with less than 50 children might
experience symmetry and efficiency problems.

MDDC

MDDC removes the trade-off between symmetry and dynamic updates
in MHC with a simple but powerful modification to the MHC key
structure and bit interleaving technique. With hierarchical clustering,
MHC imposes a partial ordering on data. Since hierarchical clustering
already forces a partial ordering that orders data according to the
dimensional hierarchies, MDDC further takes advantage of this partial
ordering. Research related to MHC has shown that mirroring the bits
of each level in compound surrogates improves symmetry in some cases
[markl:00]. In addition to mirroring bits, MDDC uses a mechanism for
variable length bit strings for each hierarchical level in the compound
surrogate. This allows MDDC to be completely dynamic while maintain-
ing the same or better symmetry than MHC.

Variable Length Bit Strings

MDDC allocates the last bit of each byte as a continuation bit so that 7 bits
of each byte are usable. Each level in a variable length compound surrogate
requires at least one byte and al so uses awhole number of bytesfor each level.
This affects the length of keys that MDDC must store in key fields but does
not affect symmetry since MDDC does not use the continuation or filler
bits when interleaving bits. It is aso important to point out that MDDC
might also have an overal variable length byte for compound surrogates
just as MHC does to accommodate unbalanced hierarchies.

Dynamic Bit Interleaving

If order preserving bit strings are used, the relative position of these bits
in a Z-address must shift. This alters the overall Z-ordering and requires
the data to be completely reorganized as bit string lengths change. Using
mirrored bits in conjunction with variable length bit strings overcomes
this problem. No matter how long the bit strings grow, the relative
position of bits in the interleaving does not change. MDDC simply adds
the additional bits for larger level values to the end of the bit string for
that level in the compound surrogate. This does not alter the relative
position of previous keys at any level in the overall bit interleaving and
therefore does not require data reorganization. Mirrored bits have one
more important advantage. Except for the value of 0, each mirrored
bit string ends with a 1 by definition. This allows MDDC to trim the
remaining filler bits, which are all zeros, when interleaving bits. With
this techniqgue, MDDC always exhibits symmetry as good as MHC and
better in some cases. If MHC specifies 8 bits for a given level in a
compound surrogate but only uses one, then MHC wastes 7 bits in the
Z-ordering. In such cases, some dimensions that are using al bits in their
compound surrogates might dominate the dimensions that have unused
bits in the collating sequence of the data structure. For the previously
listed reasons, MDDC does not include these unused bits in its dynamic
bit interleaving process.

The customer example presented in the MHC section has the MDDC
format depicted in Table 2.

Variable length, mirrored bit strings in conjunction with dynamic bit
interleaving provide as good or better symmetry as compared to MHC.
In addition, MDDC does not impose any preset limits on the number of
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Table 2. MDDC Compound Surrogate for Customer Dimension

REGION STATE CITY |CUSTOMER
10000000 10101000 10000100 11000000

distinct key values from any hierarchy level. Thus, MDDC is also

completely dynamic unlike MHC.

Queries

MDDC is like MHC in that it only alters the content of dimension keys
and the collating sequence in host data structures and does not alter any
of its other properties.

Point Queries

Point queries are very simple in MDDC. When the query specifies the
full key for each dimension, MDDC simply computes the single address
for the complete search key with dynamic bit interleaving as it makes
comparisons with other keys in the data structure to locate the record
or records with the specified key values.

Range Queries

MDDC uses wild card or “don’t care” bits in the dynamic bit interleaving
for dimension key values or parts of dimension key values that the query
does not specify and then proceeds to query the resulting key values.

Maintenance

MDDC inserts, deletes, and updates records with standard data structure
methods with the caveat that MDDC dynamically interleaves the bits
for all keys involved in comparisons in the data structure. The
interleaved bits determine the placement and organization of records
within the data structure. In doing so, MDDC does not in any way alter
the properties of the host data structure.

MDDC and B-trees

Like MHC, MDDC works especially well with B-trees. Therefore, B-
trees containing keys that the MDDC algorithm organizes retain all
maintenance advantages of B-trees including the perfect balance,
shallow depth, granular concurrency control, and recoverability. Unlike
MHC, MDDC does not require data reorganization. Therefore, it is
completely dynamic and can readily accommodate real-time updates.

CONCLUSIONS AND FUTURE WORK

MDDC provides dynamic, real-time updates and efficient symmetry for
OLAP queries. MDDC does not require data reorganizations, demon-
strates suitability for the most common OLAP queries, and has the
capability to reduce the size and number of secondary indexes and
materialized views. This paper outlines the basic concepts of MDDC.

In the near future we hope to complete experiments and demonstrate
the effectiveness of MDDC.
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