
Emerging Trends and Challenges in IT Management 259

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

MDA-Based Design
Pattern Components

Liliana Martinez, INTIA - Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Tandil - Argentina, lmartine@exa.unicen.edu.ar

 Liliana Favre, INTIA - Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Tandil - Argentina, & CIC, Buenos Aires, lfavre@exa.unicen.edu.ar

ABSTRACT
The Model Driven Architecture (MDA) is an initiative of the Object
Management Group (OMG) that promotes the use of models for
developing software systems. It distinguishes at least three different
kinds of models: Platform Independent Model (PIM), Platform Specific
Model (PSM) and Implementation Specific Model (ISM). The concepts
of models, metamodels and model transformations are at the core of
MDA. In this paper we describe a meta-modeling technique to define
design pattern components from a MDA perspective. In this context,
we propose a “megamodel” for defining reusable components that
integrates different kinds of models with their respective metamodels.
We analyze metamodel-based model transformations among levels of
PIMs, PSMs and ISMs. We illustrate the approach to define reusable
design pattern components using the Observer pattern.

1 INTRODUCTION
The Model Driven Architecture (MDA) is an initiative of the Object
Management Group (OMG) that promotes the use of models and model
transformations for developing software systems (MDA, 2005). MDA
distinguishes at least three kinds of models: Platform Independent Model
(PIM), Platform Specific Model (PSM) and Implementation Specific
Model (ISM). A PIM is a model that contains no reference to the
platforms that are used to realize it. A PSM describes a system in the
terms of the final implementation platform e.g., .NET or J2EE. An ISM
refers to components and applications.

A model driven development is carried out as a sequence of model
transformations that includes at least the following steps: construct a
PIM; transform the PIM into one or more PSMs, and construct
executable components and applications directly from the PSMs (Kleppe
et al., 2003; MDA, 2005).

Metamodeling has become an essential technique to support model
transformations. In MDA metamodels are expressed using MOF (Meta
Object Facility) that defines a common way for capturing all the standard
and interchange constructs. They are expressed as a combination of
UML class diagrams and OCL constraints (UML, 2005; OCL, 2005). The
4 main core metamodeling constructs are classes, binary associations,
data types and package.

MDA is a young approach and several technical issues are not adequately
addressed. The success of MDA depends on the definition of model
transformations and component libraries which make a significant
impact on MDA-based tools. To date existing Case tools (CASE TOOLS,
2005) do not provide adequate support to deal with component-based
reuse and MDA.

In this paper we analyze a technique to reach a high level of reusability
and adaptability of MDA design pattern components. Design pattern
describes solutions to recurring design problems. Arnout (2004) analyzes
the popular Gamma´s design patterns (Gamma et al., 1995) to identify
which ones can become reusable components in an Eiffel library. Their

work hypothesis is that “design patterns are good, but the components
are better” because they are reusable in terms of code. Our work takes
up these ideas and contributes a metamodeling technique to built reusable
design pattern components in a MDA perspective.

We propose a “megamodel” to define families of design pattern
components in a way that fits MDA. A “megamodel” is a set of elements
that represent and/or refer to UML-based models and metamodels at
different levels of abstraction (Bezivin et al., 2004). Design Pattern
components are described at three different abstraction levels: Platform
Independent Component Model (PICM), Platform Specific Component
Model (PSCM) and Implementation Component Model (ICM). The
subcomponents in the different levels include model and metamodel
specifications and their interrelations. Metamodels allow defining as
many components as different pattern solutions can appear in a concise
way. We analyze metamodel-based model transformations of both PIMs
into PSMs, and PSMs into ISMs. We illustrate the approach by using the
Observer pattern.

This paper is organized as follows. Section 2 describes a megamodel for
defining design pattern components. Section 3 describes how to specify
components at the metamodel level. Section 4 shows how to specify
model transformations as OCL contracts. Section 5 deals with the related
work and compares our approach with other existing ones. Finally,
Section 6 considers conclusions and future work.

2 A “MEGAMODEL” FOR DEFINING DESIGN
PATTERN COMPONENTS
Most current approaches to reusability in the context of MDA are based
on empirical methods focusing on reuse of code models; however the
most effective forms of reuse are generally found at more abstract levels
of design. Reusability is difficult because it requires taking many different
requirements into account, some of them are abstract and conceptual,
whereas others such as efficiency are concrete. A good approach for
reusability must reconcile them. This work proposes an approach for
defining reusable design pattern components that integrate high level
specifications, which are independent of any implementation technol-
ogy, specifications targeted at different platforms and implementa-
tions.

To define reusable components we propose a “megamodel” that inte-
grates PIMs, PSMs and code with their respective metamodels. Fig. 1
shows the different correspondences that may be held between several
models and metamodels.

We define MDA components at three different levels of abstraction:
Platform Independent Component Model (PICM), Platform Specific
Component Model (PSCM) and Implementation Component Model
(ICM). The PICM includes a UML/OCL metamodel that describes a
family of all those PIMs that are instances of the metamodel. A PICM-
metamodel is related to more than one PSCM-metamodels. The PSCM
includes UML/OCL metamodels that are linked to specific platforms and

IDEA GROUP PUBLISHING

This paper appears in the book, Emerging Trends and Challenges in Information Technology Management, Volume 1 and Volume 2
edited by Mehdi Khosrow-Pour © 2006, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITB12861

260 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

a family of PSM-models that are instances of the respective PSCM-
metamodel. Every one of them describes a family of PSM instances.
PSCM-metamodels correspond to ICM-metamodels (Fig.1).

Metamodels are expressed as MOF-metamodel whose their main core
metamodeling constructs are classes, binary associations, data types and
package. A model transformation is a specification of a mechanism to
convert the elements of a model, that are instances of a particular
metamodel, into elements of another model which are instances of the
same or different metamodels.

We define Design Pattern components at three different abstraction
levels: the PICM includes a PIM metamodel whose instances are several
pattern solutions. PIM-metamodels describe all the concepts of the
structural and interaction view of pattern solutions. The PSCM level
includes metamodels for particular platforms and, the ICM level includes
metamodels for different programming languages.

3 SPECIFYING DESIGN PATTERN COMPONENTS
A design pattern describes a family of solutions for recurring design
problems. In this section we analyze the Observer pattern (Gamma et
al., 1995). We present a description of the Observer Pattern, a PIM-
metamodel and a PSM-metamodel based on an Eiffel platform.

3. 1 Observer Pattern Description
The design pattern Observer “defines a one-to-many dependency
between objects so that when one object changes state, all its dependents
are notified and updated automatically” (Gamma et al., 1995, p. 293).
The pattern Observer involves the following participants (Gamma et al.,
1995):

• Subject: Any number of observer objects may observe a subject.
It keeps a collection of observers and provides an interface for
add and remove observer objects (Attach and Detach). When-
ever its state changes (typically the values of some of its
attributes change), the subject will notify its observers (notify).

• Observer: It can observe one or more subjects. It defines an
updating interface for objects that should be notified of changes
in a subject (update).

• Concrete Subject (ClockTimer): It stores state of interest to
ConcreteObserver objects and sends a notification to its observ-
ers when its state changes.

• Concrete Observer (AnalogClock and DigitalClock): It main-
tains a reference to a ConcreteSubject object. It stores state that
should stay consistent with the subjects and implements the
observer updating interface to keep its state consistent with the
subjects (Update).

Fig. 2 shows a UML class diagram and a UML sequence diagram of a
typical application using Observer pattern.

3. 2 PIM-Metamodel of the Observer Pattern
The Observer pattern metamodel at PIM level specifies the structural
and behavior views of this pattern in a platform independent pattern
model. That is, it specifies the classes that participate, its operations
and attributes and the relationship between classes.

There are four essential participants: Subject, Observer, ConcreteSubject
and ConcreteObserver. So, these four classes must be specified in the
metamodel, as well as the relationship between them and their interac-
tions.

The specialized UML metamodel of the Observer pattern is partially
shown in Fig. 3. The shaded metaclasses correspond to metaclasses of
the UML metamodel, whereas the remaining corresponds to the special-
ization of the UML metamodel of the Observer pattern. Fig. 4 partially
shows some well-formedness rules in OCL for the metamodel.

Semantics

AbstractObserver. This metaclass specifies the characteristics of
Observer class inside the Observer pattern. It should have at least an
operation with the characteristics of Update. Each instance of this
metaclass can be an abstract class or an interface. If the instance is an
abstract class, a concrete observer inherits its behavior, therefore there
is an inheritance relationship with the concrete observer. If the instance
is an interface, there is a realization relationship with the concrete
observer.

ConcreteObserver. This metaclass specifies the characteristics of a
concrete observer. It knows the subject (or the subjects), then it is
associated to ConcreteSubject through a unidirectional association
navigable away from that end.

AbstractSubject. Each instance of this metaclass can be an abstract
class or an interface and it has at least three operations specified by
Attach, Detach and Notify. If the instance of this metaclass is an abstract

Figure 1. Defining MDA components

UML/OCL
PIM

JAVA-CODE EIFFEL-CODE

 C# -CODE

 C++-CODE

PSM-J2EE PSM-EIFFEL PSM-.NET

Model Transformation

Instance of

Metamodel Relation

Model

PSCM

ICM

PICM

ICM

PSCM

 UML/OCL
 PSM-J2EE

 UML/OCL
 PSM-EIFFEL

JAVA

 UML/OCL
PSM-.NET

 EIFFEL

C++

PICM

 Metamodel

 UML/OCL PIM
 Metamodel

… … …

Figure 2. Observer design pattern

Ob s e rve r

u p d a te ()

S u b je ct

a tta ch (Ob s e rve r)
d e ta ch (O b s e rve r)
n o ti fy()

0 ..*1 ..*

o b s e rve rs

0 ..*1 ..*

C o n cre te S u b je ct

s u b je c tS ta te

g e tS ta te ()
s e tS ta te ()

C o n cre te O b s e rve r

o b s e rve rS ta te

u p d a te ()

1 ..*

0 ..*s u b je c t

1 ..*

0 ..*

re s u lt=
s u b je c tS ta te

o b s e rve rS ta te =
s u b je c t->g etS ta te()

p o s t: o b s e rve rs -> fo rAll
(o :Ob s e rve r | o -> u p d a te ())

a C o n c re te O b s e rve r :
C o n cre te O b s e rve r

a C o n c re te S u b je ct :
C o n cre te S u b je ct

a n o th e rC o n cre te Ob s e rve r :
C o n c re te O b s e rve r

s e tS ta te ()

n o ti fy()

u p d a te ()

u p d a te ()
g e tS ta te ()

g e tS ta te ()

a . C lass D ia gram

b . S e quence D iagram

Emerging Trends and Challenges in IT Management 261

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

class, all concrete subjects inherit its behavior, therefore there is an
inheritance relationship with the concrete subject.

If the instance is an interface, there is a realization relationship with the
concrete subject. If the instance of AbstractSubject is an abstract class,
it is associated to an instance of AbstractObserver through a unidirec-
tional association navigable away from that end.

ConcreteSubject. This metaclass specifies the characteristics of a
concrete subject. It has at least two operations specified by GetState and
SetState and its internal state is specified by the ObserverState metaclass.

3. 3 PSM-Metamodel of the OBSERVER Pattern
For each design pattern at the PIM level there are a number of
metamodels corresponding to different platforms. The metamodel of
the observer pattern in an EIFFEL platform is described below. Fig. 5
partially shows the UML specialized metamodel of the Observer pattern
in the Eiffel platform (structural view) and some OCL rules. The shaded
metaclasses correspond to metaclasses of the Eiffel metamodel.

4 SPECIFYING METAMODEL-BASED MODEL
TRANSFORMATIONS
A model transformation is a specification of a mechanism to convert
the elements of a model, that are instances of a particular metamodel,
into elements of another model which can be instances of the same or

different metamodels. Metamodel transformations are a specific type
of model transformations that impose relations between pairs of
metamodels. They can be used in the specification stages of the MDA-
based developments to check the validity of a transformation.

We specify metamodel-based model transformations as OCL contracts
that are described by means of a transformation name, parameters, local
operations, preconditions and postconditions. The precondition states
the conditions that must hold whenever the transformation is applied.
The postcondition states the properties that the transformation guar-
antees when it was applied.

Next, we partially exemplify a transformation from a PIM to an Eiffel-
based PSM that is included in an Observer Pattern component. The
definition of the transformation from PIM to PSM uses both the
specialized UML metamodel of the Observer pattern and the UML
metamodel of an Eiffel platform as source and target parameters
respectively. The source metamodel describes a family of packages
whose elements are only classes and associations. The postconditions
establish correspondences among classes, their superclasses, param-
eters, operations, and associations. The transformation specification
guarantees, for instance, that for class sourceClass in the source model
exists a class targetClass in the target model, both of them with the same
name, the same parent classes, the same child classes and so on. (See
Box A.)

5 RELATED WORK AND DISCUSSION
In Budinsky et al. (1996) a tool to automatically generate code of design
patterns from a small amount of information given by the user is
described. This approach has two widespread problems. The user should
understand “what to cut” and “where to paste” and both cannot be
obvious. Once the user has incorporated pattern code in his application,
any change that implies to generate the code again will force it to
reinstate the pattern code in the application. The user cannot see
changes in the generated code through the tool.

Florijn et al. (1997) describes a tool prototype that supports design
pattern during the development or maintenance of object-oriented
programs.

Albin-Amiot & Guéhéneuc (2001a) describes how a metamodel can be
used to obtain a representation of design patterns and how this repre-
sentation allows both automatic generation and detection of design
patterns. The contribution of this proposal is the definition of design
patterns as entities of modeling of first class. The main limitation of this

Figure 3. A simplified observer pattern metamodel

Class ifier

Operation

As sociation

As sociationEnd

Attribute

Update

AbstractObs erver

1..*1..*

As socEndObs ervers

0..*
1

0..*
1

Relations hipObs erver

1

1..*

1

1..*

ObserverState

SubjectObserver
11 11

ConcreteObs erver

1

1

1

1

1..*

1

1..*

1

As socEndSubject

11 11

Attach Detach Notify

As s ocEndConcreteObserver
1..*

1

1..*

1

AbstractSubject

0..*
1

0..*
1

1..*1..* 1..*1..* 1..*1..*

ObserverSubject
11 11

Relationship

Clas s

Relations hipSubject

1

1..*

1

1..*

As socEndConcreteSubject
11 11

SubjectState

SetState

GetState

ConcreteSubject

1

1

1

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*1..*

1..*1..*

Clas sifierRole

 Operation
(from Core)

 CallOperationAction
(from Messaging Action)

1
0..*

1
0..*

Message

1
*
1
*

AssociationEnd
Role

AssociationRole

ObserverSubjectAssocEndConcreteSubject AssocEndConcreteObserver

ObserverSubjectRole

1+base 1

ConcreteSubject

AssocEndSubjectRole

1+base 1

11 11

ConcreteObserver

UpdateMessage

GetStateMessage
*

1

+succesor*

+predecessor1

11

+activator

AssocEndObserverRole

1+base 1

11 11

NotifyMessage

*

1

+successor*

+predecessor1

*

1

*

+activator 1

SubjectRole

1 1
+sender

1 1

1 1
+receiver

1 1

1..*+base 1..*

1

*

+receiver
1

*

1

*
+sender

1

*

**

ObserverRole

1..*+base 1..*

1+receiver 1 1

0..1

+sender
1

0..1

**

SetStateMessage

1

1

+predecessor1

+succesor111

+activator
1

1
+receiver

1
1 1

1 +sender
1

1

a. Class Diagram Metamodel

b. Collaborations Metamodel

Figure 4. Observer pattern metamodel: Some well-formedness rules

Well-formedness rules – Class Diagram Metamodel

context AbstractObserver inv:
(self.oclIsTypeOf(Class) and self.isAbstract = #true) or self.oclIsTypeOf(Interface)

context AbstractSubject inv:
(self.oclIsTypeOf(Class) and self.isAbstract = #true) or self.oclIsTypeOf(Interface)

 and self.oclIsTypeOf(Interface) implies self.assocEndSub ->isEmpty()

context AssocEndConcreteSubject inv:
self.isNavigable= #true and (multiplicity.range.lower= 0 or multiplicity.range.lower> 0)
and (self.multiplicity.range.upper > 0 or self.multiplicity.range.upper = #unlimited)

context AssocEndSubject inv:
self.isNavigable= #false and (multiplicity.range.lower= 0 or multiplicity.range.lower> 0)
and (self.multiplicity.range.upper > 0 or self.multiplicity.range.upper = #unlimited)

context Attach inv:
self.isQuery= #false and self.parameter->notEmpty() and self.parameter->select(param |

param.kind= #in and param.type= oclIsKindOf(AbstractObserver)) -> size() = 1

context ConcreteObserver inv:
 self.oclIsTypeOf(Class) and self.isAbstract = #false

context ConcreteSubject inv:
self.oclIsTypeOf(Class) and self.isAbstract = #false

context RelationObs inv:
self.oclIsTypeOf(Generalization) or
(self.oclIsTypeOf(Abstraction) and self.stereotype.name= ‘realize’)
and self.oclIsTypeOf(Generalization) implies (self.parent.oclIsKindOf(Class) and

self.parent.oclIsTypeOf(AbstractObserver) and self.child.oclIsTypeOf(ConcreteObserver))
and self.oclIsTypeOf(Abstraction) implies (self.supplier.oclIsKindOf(Interface) and

self.supplier.oclIsTypeOf(AbstractObserver) and elf.client.oclIsTypeOf(ConcreteObserver))
…

262 2006 IRMA International Conference

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

approach concerns the integration of the generated code with the user
code.

Albin-Amiot & Guéhéneuc (2001b) presents two tools (Scriptor and
PatternsBox) that help the developers to implement large applications
and large frameworks using design patterns. In Scriptor the developers
have little or no control on the generated code, once the code is
generated, there is no form of locating what design pattern has been
applied and where it has been applied. PatternsBox (preservative
Generation) tool allows us to instantiate design patterns. The developers
need to write most or great part of the code by hand.

Judson et al. (2003) describes an approach to rigorous modeling of
pattern-based transformations that involves specializing the UML
metamodel to characterize source and target models.

Kim et al. (2003a) describes a metamodeling approach to specify design
patterns using roles. They analyze the characteristics of object-based
roles and generalize them. Based on the generalized notion of a role, they
define a new notion of a model role which is played by a model element.
The approach is intended to be easy to use and practical for the
development of tools that incorporate patterns into UML models.

Kim et al. (2003b) describes a metamodeling approach that uses a pattern
specification language called Role-Based Modeling Language (RBML).
A pattern specification defines a family of UML models in terms of
roles, where a role is associated with a UML metaclass as its base. RBML
uses visual notations based on the UML and textual constraints expressed
in OCL to specify patterns properties. The RBML allows specifying
various perspectives of design patterns such as static structure, interac-
tions and state-based behavior.

France et al. (2004) presents a technique to specify pattern solutions
expressed in the UML. The specifications created by this technique are
metamodels that characterize UML design models of pattern solutions.
The patterns specification consists of a Structural Pattern Specification
(SPS) that specifies the class diagram view of pattern solutions, and a
set of Interaction Pattern Specification (IPSs) that specifies interac-
tions in pattern solutions. A UML model conforms to a pattern
specification if its class diagram conforms to the SPS and the interac-
tions described by sequence diagrams conform to the IPSs.

Our motivation is to integrate design patterns with MDA. The following
advantages between our approach and some existing ones are worth
mentioning. A design pattern metamodel allows detecting the presence
of a pattern in a model. If there were no metamodels, a library of models
specifying each one the ways in that the design pattern can appear should
be necessary (this is expensive). Also, it should be necessary to compare
the model that is analyzed with the models of the library to see if
matching exists. On the other hand, the specification of the metamodels
in the three levels allows us to refine pattern model step-by-step. In the
context of MDD, model-to-model transformations can achieve a more
complete code generation using design patterns.

In a Model Driven Development (MDD) different tools could be used to
validate/ verify models at different abstraction levels (PIMs, PSMs, or
implementations). In this direction we have formalized UML/OCL
metamodels and metamodel-based model transformations. We use a
metamodeling notation NEREUS that is independent of any formal
language and can be translated to specific ones. A detailed description
may be found at Favre (2005b).

6 CONCLUSIONS AND FUTURE WORK
In this paper we analyze a metamodeling technique to reach a high level
of reusability and adaptability of MDA-based design pattern compo-
nents. We propose a megamodel for defining components that inte-
grates PIMs, PSMs, and code models with their respective metamodels.
We use our approach to specify standard design patterns.

We are validating the technique through rigorous forward engineering
processes based on design patterns that integrate formal specifications
and UML/OCL (Favre, 2005a).

Figure 5. Observer pattern metamodel - EIFFEL platform

EiffelClassRoutine

Association

AssociationEnd

Attribute

Update

AbstractObserver

1..*1..*

AssocEndObservers

0..*

1

0..*

1

Relationship
Observer

1

1..*

1

1..*

ObserverState

Generalization

SubjectObserver

11 11

ConcreteObserver

1

1

1

1

1..*

1

1..*

1

AssocEndSubject
11 11

Attach
Detach Notify

AssocEndConcreteObserver
1..*

1

1..*

1

AbstractSubject

0..*
1

0..*
1

1..*1..*
1..*1..* 1..*1..*

ObserverSubject
11 11

Relationship
Subject

1

1..*

1

1..*

AssocEndConcreteSubject
11 11

SubjectState

SetState

GetState

ConcreteSubject

1

1

1

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*1..*
1..*1..*

Feature

context AbstractObserver inv:
self.isAbstract = #true

context AbstractSubject inv:
self.isAbstract = #true

context RelationshipObserver inv:
self.parent.oclIsTypeOf(AbstractObserver) and self.child.oclIsTypeOf(ConcreteObserver)

context RelationshipSubject inv:
self.parent.oclIsTypeOf(AbstractSubject) and self.child.oclIsTypeOf(ConcreteSubject)
…

Transformation PIM-UML TO PSM-EIFFEL {

parameters
sourceModel: Design Pattern Metamodel :: Package
targetModel: Design Pattern Metamodel-EIFFEL :: Project

local operations
equivalentType (a_type: Design Pattern Metamodel::Classifier,
 another_type: Design Pattern Metamodel-EIFFEL::Classifier): Boolean

…

pre:
sourceModel.importedElement � isEmpty

post:
sourceModel.ownedElement � select(oclIsTypeOf(Class))� size() +

sourceModel.ownedElement � select(oclIsTypeOf(Interface))� size() =
targetModel.ownedElement � select(oclIsTypeOf(EiffelClass))� size()

post:
sourceModel.ownedElement � select(oclIsTypeOf(Class))� forAll (sourceClass /

targetModel.ownedElement.(oclIsTypeOf(EiffelClass))� exists (targetClass /
sourceClass.name = targetClass.name and
sourceClass.generalization.parent = targetClass.generalization.parent and
sourceClass.specialization.child = targetClass.specialization.child and
sourceClass.templateParameter = targetClass.templateParameter and
sourceClass.feature � select (oclIsTypeOf(Attribute)) � forAll (sourceAtt /

 targetClass.feature � select (oclIsTypeOf(Attribute)) � exists (targetAtt /
sourceAtt.name = targetAtt.name and
sourceAtt.visibility = targetAtt.visibility and
equivalentType(sourceAtt.type, targetAtt.type))) and

sourceClass.feature � select (oclIsTypeOf(Operation)) � forAll (sourceOp /
targetClass.feature � select (oclIsKindOf(Routine)) � exists (targetOp /
targetOp.name = sourceOp.name and
equivalentType (targetOp.type, sourceOp.type) and
sourceOp.parameter � size() = targetOp.parameter � size() and

Sequence {1..(sourceOp.parameter� size())} � forAll (index:Integer /
targetOp.parameter� at(index).name = sourceOp.parameter� at(index).name and
equivalentType (targetOp.parameter� at(index).type, sourceOp.parameter� at(index).type))

))
))
…

}

Box A.

Emerging Trends and Challenges in IT Management 263

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A crucial problem is how to detect sub-diagrams which can be matched
with a pattern. Metamodeling helps in the identification of design
patterns by signature matching and semantic matching. The metamodel
establishes what elements should be present in the pattern model and
their restrictions. Metamodeling allows us to check models against a set
of rules to ensure precise and consistent transformations.

REFERENCES
Albin-Amiot H., Guéhéneuc Y. (2001a). Meta-modeling Design Pat-

terns: application to pattern detection and code synthesis.
Proceeding of ECOOP Workshop on Automating Object-Ori-
ented Software Development Methods.

 Available: www.yann-gael.gueheneuc.net/Work/Publications/
Documents/ECOOP01AOOSDM.doc.pdf

Albin-Amiot H., Guéhéneuc Y. (2001b). Design Pattern Application:
Pure-Generative Approach vs. Conservative-Generative Ap-
proach. Proceedings of OOPSLA Workshop on Generative
Programming, Florida, USA. Available: www.yann-
gael.gueheneuc.net/Work/Teaching/Documents

Arnout, K. (2004). From Patterns to Components. Ph. D. Thesis, Swiss
Institute of Technology (ETH Zurich).

Bezivin, J., Jouault, F., Valduriez, P. (2004) On the need for Megamodels.
In: J. Bettin, G. van Emde Boas, A. Agrawal, M. Volter, & J.
Bezivin (Eds.). Proceedings of Best Practices for Model-Driven
Software Development (MDSD 2004). OOSPLA 2004 Work-
shop. Available:www.softmetaware.com/oopsla2004/bezivin-
megamodel.pdf

Budinsky, F., Finni, M., Vlissides, J., Yu, P. (1996) Automatic code
generation from design patterns. IBM System Journal, Vol 35,
N° 2. 151-171.

CASE TOOLS (2005). Available: www.objectbydesign.com/tools
Favre, L. (2005a). Foundations for MDA-based Forward Engineering.

Journal of Object Technology (JOT). (ETH) Zurich, Swiss
Federal Institute of Technology, ISBN 1660-1769. Vol 4, N° 1,
Jan/Feb. 129-153.

Favre, L. (2005b). A Rigorous Framework for Model Driven Develop-
ment. In: T. Halpin, J. Krogstie and K. Siau (Eds.). Proceedings
of CAISE´05 Workshops. EMMSAD ´05 Tenth International
Workshop on Exploring Modeling Method in System Analysis
and Design Porto, Portugal: FEUP Editions. 505-516.

Florijn, G., Meijers, M., van Winsen, P. (1997). Tool support for object-
oriented patterns. Proceeding of ECOOP’97 (European Confer-
ence on Object Oriented Programming), Jyväskylä, Finland.
472-795.

France, R., Kim, D., Ghosh, S., Song, E. (2004). A UML-Based Pattern
Specification Technique. IEEE Transactions on Software Engi-
neering. Vol. 30, Nº3, March, 2004. IEEE Computer Society.
193-206.

Gamma, E., Helm, R., Johnson, R.,Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley.

Judson, S., Carver D., France, R. (2003). A metamodeling approach to
model transformation. OOPSLA Companion 2003. 326-327.

Kim, D., France, R., Ghosh, S., Song, E. (2003a). A Role-Based
Metamodeling Approach to Specifying Desing Patterns. Pro-
ceedings of the 27th Annual International Computer Software
and Applications Conference (COMPSAC’03). IEEE Computer
Society. 452-457.

Kim, D., France, R., Ghosh, S., Song, E. (2003b). A UML-Based
Metamodeling Language to Specifying Design Patterns.
Wisme@UML’2003-UMLWorkshop (Workshop in Software
Model Engineering). San Francisco, USA. Available:
www.cs.colostate.edu/~georg/aspectsPub/WISME03-dkk.pdf

Kleppe, A., Warner, J. & Bast, W. (2003). MDA Explained. The Model
Driven Architecture: Practice and Promise. Addison Wesley.

MDA (2005). The Model Driven Architecture. Available: www.omg.org/
mda

OCL (2005). OCL 2.0 Specification. Version 2.0. Formal document :
ptc/05-06-06. URL: www.omg.org

UML (2005). UML 2.0 Superstructure Specification. OMG Available
Specification: formal/05-07-04. Available: www.omg.org.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/mda-based-design-pattern-

components/32758

Related Content

Repurchase Prediction of Community Group Purchase Users Based on Stacking Integrated

Learning
Xiaoli Xie, Haiyuan Chen, Jianjun Yuand Jiangtao Wang (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-16).

www.irma-international.org/article/repurchase-prediction-of-community-group-purchase-users-based-on-stacking-

integrated-learning/313972

Electronic Data Interchange (EDI) Adoption: A Study of SMEs in Singapore
Ping Liand Joseph M. Mula (2009). Information Systems Research Methods, Epistemology, and

Applications (pp. 272-292).

www.irma-international.org/chapter/electronic-data-interchange-edi-adoption/23480

On-Line Credit and Debit Card Processing and Fraud Prevention for E-Business
James G. Williams (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 2707-

2722).

www.irma-international.org/chapter/on-line-credit-and-debit-card-processing-and-fraud-prevention-for-e-business/183982

A Comprehensive Survey on Face Image Analysis
Yu-Jin Zhang (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 491-500).

www.irma-international.org/chapter/a-comprehensive-survey-on-face-image-analysis/112362

Prediction System-Based Community Partition for Tuberculosis Outbreak Spread
Fatima-Zohra Younsiand Djamila Hamdadou (2022). International Journal of Information Technologies and

Systems Approach (pp. 1-20).

www.irma-international.org/article/prediction-system-based-community-partition-for-tuberculosis-outbreak-spread/289998

http://www.igi-global.com/proceeding-paper/mda-based-design-pattern-components/32758
http://www.igi-global.com/proceeding-paper/mda-based-design-pattern-components/32758
http://www.irma-international.org/article/repurchase-prediction-of-community-group-purchase-users-based-on-stacking-integrated-learning/313972
http://www.irma-international.org/article/repurchase-prediction-of-community-group-purchase-users-based-on-stacking-integrated-learning/313972
http://www.irma-international.org/chapter/electronic-data-interchange-edi-adoption/23480
http://www.irma-international.org/chapter/on-line-credit-and-debit-card-processing-and-fraud-prevention-for-e-business/183982
http://www.irma-international.org/chapter/a-comprehensive-survey-on-face-image-analysis/112362
http://www.irma-international.org/article/prediction-system-based-community-partition-for-tuberculosis-outbreak-spread/289998

